
WELCOME
GUIDE

8RlTI SH BROADCASTI NG COHI>()RATION
MASTER SERIES MI CROCOMPUT ER

MASTER SERIES· DATTERY UNIT

The Master Senes range of microcomputers are now fitted with a 4.5V battery uml instead of one 3.0V
lithium cel l. Read Lhe following items of lext in conjunction with the relevant pages in Issue 1 and 2 of
the Welcome Guide:

• \v~lcome Gutd~ (ituid~ front pag~). inltrnal baltt!ry: The warnings on handling and disJX"saJ of
Uthium cells generally apply 10 this bauery unit

• Wdconu Guide (Page 242). repilJCing flu, InlunaJ ballery- Replace all of page 242 with the
foUowing text:

REI'ER TO llIE WARNING AT TIlE f'RONT OF TIllS GUIDE DEr-oRE AnEMP11NG TO
REMOVE OR REPLACE 11 lE INTERNAL DAlTEI(Y.

The banery unit fiued in your computer is used 10 maintain the contents o f the CMOS RAM a!. all
Limes when the computer is disconnected from the mains power supply.

Undernonnru operating conditions the life oflhe baltery is Upecled to be approximalely one year
A rcplacemenl brutery can be obtruned from your supplier.

Removing or replacing the b311Cry uml may corrupt the CUrTeIll content of the CMOS RAM. IL is
JeCOmmended that a copy of the scttings IS senl lO tape or disc. Take the following steps:

1 SeleCl lhe appropriale filmg system and load a cassette or appropriately formaued disc.
2 Type the following,

MODED
· SPOOL CONF'IG
" STATUS

<RETURN>
<RETURN>
<R£TUR~>

The computer displays (and SIOres) a bst of the current CMOS RAM settings.
3 Close the spool fil e by typing:

- SPOOL <RETURN>

TIle following infonnaaion teUs you how to disassemble the computer, remove the old b31lery unit
and replace it with a new battery unit. The points of the compass are used 10 indicate the way in
which items are onenLaled . With the computer positioned such that the kcyboanl is facing you,the
nearest ed~e is soun-t. Ihe rear NORTH the righl is EAST and the left is WEST.

To disassemble the computer,lake the following steps:

I Disconnectlhe computer from all peripheral units and the mams power supply.
2 Place the computer UpSlOC: down on a fiml flat surface.
3 Locate and remove the four fiX1Ilg screws, labe.lled "FIX", found on the underside of the urnt (two

at the fronl and two at the rear), The rear screws are longer tJlan the front screws.
4 Re-invert the computer while holtJing the two h.aJves of u,e case together,
5 Remuve tJ \C upper half by IiflinS it direct ly upwards from thc base of the machme.

TIle baltery unit fined to your microcomputer is one of two possible types:

A combinnlion or three shrink-wrapped batteries (NEW SITLE).
A battery holder and metal plate assembly (OLD SITLE).

The NEW STYLE baltery unit is 10caJ.cd between the WEST edge or the keyboard and the WEST
edge or the main case. h has no fudngs (apart ronn the pair of red and black. leads which connect
between the NORlll end or the battery unit and the plug PL8 which is located on the WEST edge
of the printed circuit board) and is pushed into the n:cess.

111e OLD SITLE battcry unit is located between the WEST edge or the main printed cireuit
board, and the EAST edge or the power supply unit. The battery unit is connected to the computer
by two fiXing screws, and by a pair or red and black. leads which connect between the end of the
banery unit nearest the keyboard and PL8.

To remove a NEW STYLE battery unit , take the rollowing steps:

I Disconnect the flying lead from PL8taking nOle of the cable routing.
2 Carefully puU the unit up until it is free of the case.

To remove an OLD STYLE battery unit, lake the following steps:

I Remove the two fix.ing screws securing the battery holder retaining plate.
2 Disconnect the nying lead from PL8.
3 Remove the unit.

To fit a battery unit, take the following steps:

1 Hold the battery so that the double-height part of the unit f3ccs the front of the power supply unil
2 C.vefully push the battery into the recess between the WEST edge of the case and the WEST edge

of the keyboard P C.B. Make sure the nying lead is not trapped under the unit. The ba.ttery is fuUr
fined when the base of the unit is flush with the bottom of the computer case. If there is a slight
resistMce. gently push the battery into place.

3 Route the flying lead EAST, between the keyboard and the power supp ly unit, across the soum
end or the case's clear area and NOR'n I along the WEST edge of the main r .e.B. until it reaches
PLS.

4 Connect the flying lead to PL8 . 11le black lead connects to th e NORll I pin, the n:d lead connects
to the cenlJ'31 pin. The SQUll l pin is not connected. Ensure that the socket on the end of lhe nying
lead covers all three pms of IlL8.

5 Replace the top half of the case following the reverse of Ihe removal procedure.

Take the following steps 10 restore CMOS RAM 10 ilS former SLale:

I Connect tJle computer to the mams supply.
2 Execute a power on reset by switching the computer on while prenine the R key.
3 Keep the R key pressed unlLl a messase is displayed.

Continue w'llh the instructIOns on page 243 or thc Welcome Guide.

Part No,0443,900 Issue 1 January 1987

The BBC Microcomputer
System

Master Series

WELCOME GUIDE

Part number 0443,000
Issue 2
March 1986

WARNING: THIS COMPUTER MUST BE EARTHED

Important:
The wires in the mains lead for the computer are coloured in accordance with the following
code:

Green and yellow
Blue
Brown

Earth
Neutral
Live

The moulded plug must be used with the fuse and fuse carrier firmly in place. The fuse carrier
is of the same basic colour (though not necessarily the same shade of that colour) as the
coloured insert in the base of the plug. Different manufacturers' plugs and fuse carriers are
not interchangeable. In the event ofloss of the fuse carrier, the moulded plug MUST NOT be
used. Either replace the moulded plug with another conventional plug wired as described
below, or obtain a replacement fuse carrier from an Acorn Computers authorised dealer. In
the event of the fuse blowing it should be replaced, after clearing any faults , with a 3 amp fuse
that is ASTA approved to BS1362.

If the socket outlet available is not suitable for the plug supplied, the plug should be cut off
and the appropriate plug fitted and wired as noted below. The moulded plug which was cut off
must be disposed of as it would be a potential shock hazard ifit were to be plugged in with the
cut off end of the mains cord exposed.

As the colours of the wires may not correspond with the coloured markings identifying the
terminals in your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug
which is marked by the letter E , or by the safety earth symbol + or coloured green, or green
and yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the
letter N , or coloured black.

The wire which is coloured brown must be connected to the terminal which is marked with
the letter L, or coloured red.

Exposure
The computer should not be exposed to direct sunlight or moisture for long periods.

Ventilation
Do not block the ventilation slots in the case - see text for details.

Internal battery
The computer is fitted with a Lithium non-rechargeable cell which contains Lithium, either
Manganese Dioxide or Chromium Dioxide and a small quantity of Thionyl Chloride. The cell
is completely safe when correctly fitted but the following precautions should be observed if
the cell is removed from the computer's case:

Keep away from children and animals.
Do not attempt to recharge the cell.
Do not crush, puncture, open, dismantle , or otherwise mechanically interfere with or abuse
the cell.
Do not dispose of in fire.
Do not solder.
Do not short circuit.

The cell has a very high energy level for its size and should not be carried in pockets with
keys, loose change etc . or placed in contact with metal objects.

Within this publication the term 'BBC' is used as an abbreviation for 'British Broadcasting
Corporation' .

© Copyright Acorn Computers Limited 1986

Neither the whole or any part of the information contained in, or the product described in,
this manual may be adapted or reproduced in any material form except with the prior written
approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it, are subject to continuous
development and improvement. All information of a technical nature and particulars of the
product and its use (including the information and particulars in this manual) are given by
Acorn Computers in good faith. However, it is acknowledged that there may be errors or
omissions in this manual. A list of details of any amendments or revisions to this manual can
be obtained upon request from Acorn Computers Technical Enquiries. Acorn Computers
welcome comments and suggestions relating to the product and this manual.

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Cambridge Technopark
Newmarket Road
CAMBRIDGE CB5 8PD

All maintenance and service on the product must be carried out by Acorn Computers'
authorised dealers. Acorn Computers can accept no liability whatsoever for any loss or
damage caused by service or maintenance by unauthorised personnel. This manual is
intended only to assist the reader in the use of this product, and therefore Acorn Computers
shall not be liable for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect use of the product.

Acorn is a trade mark of Acorn Computers Limited
VIEW and ViewSheet are trademarks of Acornsoft Limited
Econet and Tube are registered trademarks of Acorn Computers Limited

This book is part of the BBC Computer Literacy Project.
Cover design concept by Carrods Graphic Design

Written by tACORNCES
First published 1986
Published by Acorn Computers Limited

Contents

Foreword 1

Introduction 2

1 Getting Started 3
Using the computer 5
Communicating with the computer 12
The Welcome programs 15
The Welcome utilities 22

2 The BASIC Language 34
Writing a program 34
A simple program using variables 36
Help that BBC BASIC can give you 40
Saving and loading programs 44
To program or not to program 46
Simple graphics 47
Printing text 53
Input 60
Structured programs 62
Functions 68
Loops 70
Making choices 73
Error handling 78
More about strings 79
Arrays 84
Files 86
More about graphics 89
The teletext mode 94
Sound 97
128KBASIC 99
Assembly language · 99
Utility programs 101

3 Introducing VIEW 105
What is word processing ? 105
Using VIEW 105
Printing from VIEW 125
Additional features of VIEW 126

4 Introducing ViewSheet 128
What is a spreadsheet? 128
Using ViewSheet 130
Using spreadsheets with VIEW 147
Other features of ViewS he et 148

5 Filing Systems 150
What is a filing system? 150
Standard filing systems 150
The Cassette Filing System 151
The ROM Filing System 152
The Disc Filing System 153
The Advanced Disc Filing System 158

6 The Editor 164
Selecting the Editor 165
Other display modes 167
Entering text in the workspace 168

7 The Terminal Emulator 174
8 Expanding the System 175

Connecting a colour monitor 176
Connecting a disc unit 176
Connecting a printer 177
Connecting joysticks 178
Connecting a Teletext Adapter 178
Connecting a Prestel Adapter 178
The user port 179
Connecting an IEEE interface 179
Connecting a co-processor 179

Appendices
A Mode characteristics 181
B Cha racter sets 184
C Operating System commands 192
D *FX commands 197
E Filing System commands 206
F BASIC keywords 218
G VDU codes 227
H Plot codes 231
I VIEW commands 233
J ViewSheel commands 237
K Technical information 239

Index 247

Foreword

A few years ago, the suggestion that you might have a computer in your own
home would have been greeted with disbelief. Now, home computers are an
accepted fact and more and more people are beginning to investigate their
potential.

Thankfully, the intervening years have seen many developments and today's
microcomputers offer real processing power - making them suitable for use not
only in the home but also in classrooms, laboratories and our increasingly
automated offices.

BBC Microcomputer systems have been available throughout this period of
change and, unlike many comparable machines, they have provided flexibility
and expandability, enabling them to grow to meet the changing needs of their
users. It is therefore no accident that this, the latest BBC Microcomputer, is
one of the most advanced in its class, offering a large user memory and a
number of powerful standard facilities including:

BBC BASIC;
VIEW, a professional word-processing package;
ViewSheet, a powerful electronic spreadsheet;
The Acorn Editor, a full-screen text editor;
Terminal emulation software.

Where appropriate, each of these features is compatible with its
implementation on earlier BBC microcomputers and, as before, your computer
is readily expandable by the addition of disc units, printers, high-resolution
monitors and expansion units such as the Teletext and PRESTEL adaptors.

1

Introduction

This book is the 'Welcome Guide' for your Master Series computer. It provides
an introduction to the system for all new owners - including those who have
never used a computer before.

The book covers the initial setting-up of the system, an overview of the
computer's capabilities, information on expansion options and a series of useful
appendices, designed for quick reference to particular features. It is not
intended to be a comprehensive technical manual or a self-study guide - users
requiring this type of material should refer to the following publications, which
are available from dealers:

The Master Series Reference Manual- Part 1
The Master Series Reference Manual - Part 2
The VIEW Guide
The ViewSheet Guide

An Advanced Reference Manual for the Master Series computers IS also
planned for later availability.

The first chapter describes how you should start using your computer. It also
provides some backgr~und information on the accompanying Welcome
software which , for firsftime users, will give an indication of the computer's ,
power and speed.

Subsequent chapters introduce:

2

BBC BASIC;
the VIEW word-processor;
the ViewSheet electronic spreadsheet;
alternatives to cassette-tape storage;
the Editor;
the terminal emulation software;
expansions to the system.

1. Getting Started

Unpacking the equipment

Ha ving already opened the packaging to retrieve your copy of this Welcome
Guide, you should now have in front of you:

empty packaging;
your computer;
an aerial lead;
a welcome tape;
a welcome disc;
two reversible keyboard inserts;
a VIEW reference card;
a ViewSheet reference card;
a guarantee card.

Put the guarantee card in a safe place, then flatten the box and keep it together
with the two polystyrene inserts so that, in the unlikely event of a fault, you
can return the machine to your supplier in safety.

If you do not have a disc unit, you will also require an ordinary cassette tape
recorder and a lead to connect it to the computer. The lead is not supplied with
the computer because of the wide variety of cassette recorder socket types. A
full specification of the various types of lead is given on page 239 and your
supplier or an Acorn dealer will be pleased to provide one suitable for your
needs.

Preparation

This section deals with getting the computer going for the first time and the
assumption is that you will be using an ordinary domestic colour television for
displaying output from the computer. You should refer to Chapter 8 for
instructions on how to connect a black-and-white or a colour monitor.
Connection and use of your cassette recorder is discussed later in this chapter,
under the heading The Welcome programs.

The computer should be placed on a flat surface, such as a desk or table top,
within easy reach of the television. Soft surfaces (such as a carpeted floor)
should be avoided as they may block the ventilation slots in the casing and
cause overheating. You will need access to mains power for the computer and
your television or monitor.

3

Making the connections
Take the aerial lead supplied and identify the end with the long central pin.
This connector should be fixed firmly to the socket marked 'UHF' on the back of
the computer:

UHF

The other end of the aerial lead should be connected to the television set in
place of the aerial used to receive conventional television pictures.

Switching on
Plug the computer and the television into the mains and switch on the power.
Make sure that the television is switched on and that the volume is turned
right down - the computer uses its own internal speaker for generating sound.

Switch the computer on by means of the ON/OFF switch on the back:

ON/OFF SWITCH

and, if everything has gone according to plan, you should be rewarded by a
'bleep'from the computer's speaker and the appearance of two red indicators at
the top left of the keyboard. At this stage, the screen is likely to be blank or to
show a 'snowstorm' effect.

Tuning the television
The next stage is to tune your television so that it can receive the transmissions
from your computer, which are made on channel 36. The method of achieving
this will vary from television to television but, if your set is operated by means
of push-buttons, you are advised to select and tune one of the buttons you do

4

not normally use for recelvmg television broadcasts. In this way you will
always be able to use the computer without interfering with the other settings.

The aim of the tuning exercise is to achieve the following image as clearly and
sharply as possible - it contains white letters on a black background:

If the image appears blurred or distorted, try some further adjustments to the
tuning - you may be looking at a weaker version of the true signal. However, if
all else fails, you will have to consult your supplier or an Acorn dealer for
advice.

Using the computer
This section is intended to familiarise you with the operation of the computer at
its most basic level, i.e. using the keyboard for giving simple commands. We
start with a description of the keyboard itself and introduce the conventions we
shall use to describe key depressions in subsequent sections.

The keyboard

For descriptive purposes, the computer's keyboard can be divided into four
separate areas:

the main, alpha-numeric keyboard, which is laid out in the same format as
found on a conventional typewriter, with one or two additions;

a smaller, numeric keypad, which contains keys associated with the input
of numeric data;

5

a group of grey-green cursor control I editing keys ;

a row of red function keys, labelled m - f9 .

ALPHANUMERIC KEYBOARD

~ ~

0 8 9

5 "6 B
2 3 D

RET~N I
\

NUMERIC KEY PAD

The keyboard's 'touch' is similar to most electric typewriters in that only brief,
light pressure is required to activate each key. The difference , of course, is that
the characters produced by each key depression are displayed on the screen,
rather than being printed on paper. Under normal circumstances, the response
is immediate, although there are occasions (when the computer is busy doing
something else) when there may be a momentary delay before the characters
appear.

The keyboard also incorporates a feature known as auto-repeat - if a key is
pressed and held down, the corresponding character will be repeated, after a
short initial delay . Repetition continues until the key is released or until the
computer runs out of space to store the line being input (indicated by a
continuous tone from the speaker).

Throughout the remainder of this guide, we shall use

text Like t his

to denote input from the keyboard and output on the screen whereas symbols
like

denote specific key depressions. The simultaneous depression of two keys is
indicated like this:

1 SHIFT 1+1 BREAK 1

6

The alpha-numeric keyboard

The alpha-numeric keyboard contains keys denoting all the letters of the
alphabet (including space), the numbers 0 to 9, various special symbols (such as
punctuation, £ % etc.) plus a number of other special-purpose keys. It also
contains, in the top left-hand corner, a row of three red indicators labelled
power, caps lock and shift lock.

The power indicator is illuminated while the computer is switched ON.

If caps lock is ON (i.e. illuminated) , depression of any alphabetic key will
produce a capital (upper case) letter; depression of any keys containing tW()
symbols will produce the lower of the two characters.

If shift lock is ON , the alphabetic keys will still produce upper case letters but
depression of any key containing two symbols will produce the upper of the two
characters.

If neither caps lock nor shift lock is ON, depression of the alphabetic keys will
produce small (lower case) letters and the keys containing two symbols will
once again produce the lower of the two characters.

The state of the caps lock and shift lock indicators is controlled by the I Ett~ I
and I E~~7 I keys - each depression switches the corresponding indicator ON or
OFF, depending on its current state. Note that it is impossible to illuminate
both caps lock and shift lock from the keyboard - the computer uses this
simultaneous indication to denote a particular circumstance, as described
below.

The two ISHIFTI keys have no effect while shift lock is ON. If shift lock is OFF,
(regardless of the setting of caps lock) the I SHIFT I keys cause upper case letters
and symbols to be produced if either is held down while another key is
depressed. The I SHIFT I keys do not affect the shift lock indicator.

A further option is provided by pressing ISHIFTI+I E~~ I. In this case, caps lock is
switched ON as usual but in the input of subsequent characters lower case
letters of the alphabet may be obtained by holding down a I SHIFT I key.

Whether caps lock or shift lock (or neither) is ON for a particular session at the
computer is a matter of personal preference although the choice will also
depend upon the type of input, for example:

Conventional text, such as an item of correspondence input to the VIEW
word-processor, consists mainly of lower case characters interspersed with a
few capital letters;

A BASIC program consists of a mixture of special upper case words (called
keywords) interspersed with other, often lower case words (called variable
names).

7

1 CTRL 1 (which is an abbreviation for control) has no effect on its own but it may
be used in conjunction with other keys on the keyboard to invoke a number of
special effects. For example, 1 CTRL 1+ G causes the computer to emit a short
bleep; 1 CTRL 1+ L clears the display screen. Other examples are given in the
remainder of this guide and a summary of the various effects is given in
Appendix G.

1 TAB 1 normally acts like a space-bar depression although it has a special
significance when using VIEW, ViewSheet or the Editor, as described later in
this guide.

1 RETURNI is used to indicate that a particular line of input is complete - prior to
the depression of IRETURN!, IDELETEI may be used to erase the most recent
character(s) you have typed.

IESCAPE I and 1 BREAK!, as their names imply, are provided to enable you to
interrupt what the computer is doing, although IESCAPE 1 also has a special
significance when using VIEW, ViewSheet and the Editor. IESCAPE 1 should be
considered to be a 'polite request', which normally stops the computer without
any side-effects , whereas 1 BREAKI is a definite command which stops the
computer at all costs.

Depression of 1 BREAKI alone is sometimes referred to as a soft break because it
has the effect of resetting the computer to the condition it was in at the start of
the current session (BASIC, VIEW, ViewSheet, Editor etc.). A hard break is
achieved by pressing 1 CTRL 1+1 BREAKI; this resets the computer so that it
assumes the state in which it would normally be immediately after switching
on.

-®=---t"\-

8

1 SHIFT 1+1 BREAKI has a special significance if you are using a disc unit and further
details are given in the section entitled The Welcome programs, on page 15.

The potentially hazardous side-effects of accidental depression of 1 BREAK J can be
avoided by turning the break key lock (see illustration) clockwise through 90
degrees using a suitable fla t-bladed screwdriver. Normal operation is restored
by returning the screwhead to its original position.

The numeric keypad

The numeric keypad is provided as a convenient means of entering large
quantities of numeric data - it contains:

- The digits 0 - 9;
Symbols denoting the four arithmetic operations (* being used for
multiplication, / for division);
Full stop (decimal point) and comma;
Separate I RETURN J and IDELETEJ keys;
The # symbol.

Each key replicates the function of the corresponding key in the main
keyboard, with the added advantage that +, * and # may be obtained directly
(i .e. without the use of 1 SHIFT !).

The cursor control/editing keys

Under normal circumstances, the screen will show a flashing symbol known as
the cursor; it indicates the position at which the next character to be typed will
be displayed. The cursor moves one character position to the right for each
normal key depression, one character position to the left for each depression of
JDELETEJ and to the start of a new line for each depression of 1 RETURN I.

The four arrowed cursor control keys may be used to move the cursor around
the screen and it will be seen from later chapters that this facility IS

fundamental to the use of VIEW, ViewSheet and the Editor.

J COpy 1 has a special function in each of the above but it is also used in
conjunction with the cursor control keys for cursor editing - a technique
mainly used during the input and correction of programs and which is
described on page 40.

The function keys fO - f9

In certain applications, such as VIEW, ViewSheet and the Editor, it is
convenient to make use of a single key depression to denote a particular action
and the 10 red function keys across the top of the main keyboard are provided
for this purpose. Each key may be used on its own, in conjunction with JSHIFTI,

1 CTRL 1 or, indeed, ISHIFTI + I CTRL I, giving a total of 40 additional keyboard

9

functions. In these cases, it is usual to define the function invoked by each type
of depression on a special keyboard insert, such as those supplied with your
computer.

In addition, the function keys may be 'programmed' to produce a sequence of
one or more characters, thereby minimising the number of keystrokes required
to carry out frequently-used tasks. A brief description of function key
programming is given in the next section and full instructions (including the
way in which the cursor control keys, I COpy I and the numeric keypad can be
programmed) are contained in the Reference Manual.

The screen display

This section introduces the various screen displays that are available and gives
you an opportunity to tryout your newly-acquired keyboard skills. For the time
being, however, do not worry about the meaning of what you are asked to type
but concentrate on pressing the correct keys. If you type a line incorrectly (i.e.
you press IRETURNI before you spot the mistake) , the computer will respond with
a simple message, such as:

Mistake

or

No such variabLe

Ignore these messages for the time being and merely type the line in again;
their significance is explained in later chapters. One of the most likely mistakes
at this stage is to type the letter 0 instead ofthe number 0, which are denoted
by 0 and 0 respectively. If things appear to have gone irretrievably wrong, try
pressing IESCAPE I and, if that has no effect, press I BREAKI.

The computer is able to display output on the screen in a variety of different
modes, each of which has its own characteristics, in terms of the number and
length of its lines of text, the size and shape of the characters displayed and its
ability to present graphics (points, lines and areas of colour). Each screen
mode is identified by a number, which may be in the range 0 - 7 or 128 - 135.
These two sets of modes are identical in terms of what is actually displayed on
the screen; they differ only in the size and location of the area of memory set
aside for storing the current content of the screen. Modes 0 - 7 are identical to
the eight modes available on the BBC Model B microcomputer; modes 128 -
135 are referred to as the shadow screen modes (identical to those available on
the BBC Model B+ microcomputer) which provide the maximum amount of
user memory for a given type of display. We shall use modes 128 - 135 in all the
examples in this guide.

You have a means of instructing the computer to start up 10 any of the

10

available modes (see page 25) but the standard setting IS mode 7, which
provides:

25 liues of text, each 40 characters in length;
the teletext character set (see below);
limited graphics in the form of small blocks of colour.

The > symbol immediately to the left of the flashing cursor is an example of a
prompt and its appearance indicates that the computer is waiting for you to
type something. Try typing these lines to see the effect; in each case the
computer will respond by displaying the characters inside the quotation marks:

PRINT"Whi te on b Lack"IRETURNI
PRINT"lsHIFTI+1 'I 1 Red on bLack"IRETURNI

In mode 135, ISHIFTI+I 'I 1 and 1 CTRL 1+ 1 '2 1 etc. generate what are known as
teletext control codes which affect the way in which the remaining
characters on a particular line are displayed. Examples of this type of screen
display can be seen on pages from either the BBC's CEEFAX or the IBA's
Oracle services and further information is provided in Chapter 2 of this guide
and in the Reference Manual.

If you type:

MODE128 IRETURNI

the screen will clear and a smaller prompt will appear in the top left-hand
corner.

You have now selected mode 128 which provides:

32 lines of text, each 80 characters in length;
the full ASCII character set (see below);
high-resolution, 2-colour graphics.

Now type:

PRINT"White on bLack"IRETURNI
COLOUR0: COLOUR129: PRINT"BLack on whi te"l RETURN I
MOVE 600,500:PLOT149,750,500IRETuRNI
MOVE 600,500:PLOT157,700,500IRETuRNI

You may like to try repeating the same sequence of examples in each of modes
129, 130, 132 and 133 - the remaining modes which offer a graphics facility.
Notice the effect that each change of mode has on the size and shape of each
character you type, the colours produced and the 'crispness' of the circle.

Modes 131 and 134 offer a text-only display consisting of 25 lines of 80 and 40
columns respectively.

The welcome software contains a demonstration of the capabilities of the

11

various screen modes a nd Appendix A, on page 181 gives a full specification of
the characteristics of each mode.

A note on character sets

Computers use simple codes to represent characters which are stored in
memory or displayed on the screen and your computer offers two,
internationally accepted coding conventions, namely teletext and ASCII.
(ASCII is an abbreviation for American Standard Code for Information
Interchange.) The teletext set is available only in modes 7 and 135 and the
ASCII set is available in all others.

It is the ASCII character set which is etched into the key tops on the computer's
keyboard and in any mode other than 7 or 135 a representation of the
corresponding character will be displayed on the screen. The Teletext character
set is identical for all the letters of the alphabet, the digits 0 - 9 and all except
eight of the special symbols:

ASCII symbol: \ J { I }

Teletext symbol:

In addition, the teletext character set contains the elementary graphics
characters and teletext control codes mentioned on page 11, full details of
which are given in Appendix B.

Matters are made somewhat more complicated by the fact that your computer
allows the ASCII character set to be redefined and extended, thereby enabling
foreign, italic and a variety of user-defined characters to be displayed. The
example below redefines the @ key so that it displays the mathematical symbol
used to denote pi:

MODE1341RETURNI
VDU23,64,0,2,124,168,40,40,40,0IRETURNI

A utility to help you design your own characters is provided as part of the
Welcome software.

Communicating with the computer
You have now spent a short time typing things at the computer's keyboard and
witnessing the result. Initially, it does not seem particularly surprising that
when you press, say, A, the computer displays an A on the screen - this is
exactly what you would expect. In fact, one part of the computer, called the
machine operating system (MOS) works incredibly hard to produce this
simple result and it is in action for every instant that the computer is switched
on. Even when the computer appears to be idle, waiting for you to type

12

something at the keyboard, the MOS is busy maintaining the screen display
and carrying out other vital functions.

The MOS is also responsible for calling up each of the other systems provided in
your computer i.e. VIEW, ViewSheet etc. Only one system may be operational
at a given time and, unless you tell it otherwise, the MOS will automatically
select the BASIC language system for you when the computer is switched on -
hence the appearance of the word BASIC in the screen display shown on page
5. Thereafter, all input from the keyboard is collected by the MOS and passed
to the system you have chosen - you have (perhaps without realising it) been
typing BASIC instructions in the previous section. Any messages you received,
such as Mi stake or Mi ssi ng ", were produced by the BASIC system to indicate
that it was unable to make sense of the line it received from the MOS. Needless
to say, it was the MOS which actually did the job of putting the characters on
the screen.

There are, however, occasions when it it neccessary to communicate directly
with the MOS, regardless of the system currently in use. These operating
system commands have an asterisk (*) as their first character and this
symbol is used to tell the MOS that it must deal with the remainder of the line
itself.

For example, if you type

*TIMEIRETURNI

the MOS will respond with the day, date and time from its internal clock (which
is maintained by battery when the computer is switched om. See the section
headed The Welcome utilities on page 22 for instructions on how to reset the
clock if it is wrong.

*ROMS I RETURN I

will cause the MOS to list the various systems and languages resident in the
computer's read-only memory (ROM) sockets. These will include VIEW,
ViewSheet and the Editor.

Now try typing:

*WORDI RETURN I

Immediately, the MOS clears the screen and selects the VIEW word-processor.
Similarly, typing:

*SHEETIRETURNI

tells the MOS to select ViewSheet. The BASIC language system can be
reinstated by typing:

*SASIC!RETuRNI

13

The *KEY command tells the MOS to associate a sequence of characters with a
particular function key. For example, if you type:

*KEY0functi onl RETURNI

each subsequent depression ofl fo I will produce the characters function , so
you could abbreviate the input of the phrase functi on keys have Lots of
func t ions by typing:

I fo I keys have Lots of I fo Is
In this somewhat trivial example, the line remains incomplete (i.e. you can add
further characters to it, delete characters from it etc.) exactly as if the
characters were being typed one at a time from the keyboard. You can,
however, include a special sequence (:M) to simulate depression of IRETURNI so
that a function key depression becomes equivalent to one or more complete
lines. There is also no reason why the string associated with a particular
function key should not itself contain operating system commands, for
example:

*KEY1*TIME I M*ROMS I MI RETURN I

This causes each depression of! fl I to produce the time and date followed by a
listing of the computer's ROM contents.

Other operating system commands can be used to tell the MOS to change the
way it behaves. You will recall, for example, that pressing and holding down a
key on the keyboard invokes the auto-repeat facility in which the character is
repeated after an initial delay. Both the initial delay and the speed at which the
character is repeated are controlled by the MOS and they can be changed if
required. Remind yourself of the normal settings by producing a sequence of
characters using auto-repeat (and IRETURNI), then type:

*FX12,1IRETURNI

and repeat the sequence. Now see what happens if you try to produce the same
sequence after typing:

*FX11 ,01 RETURN I

In other words, *FX12 enables you to adjust the speed at which characters are
repeated and *FXll enables you to adjust the delay before auto-repeat
commences. (*FXll,O actually switches the auto-repeat facility off altogether).
You can restore both the speed and delay to their initial settings by typing:

*FX12,01 RETURN I

A summary of these , and the host of other special effects is given in Appendix
D .

14

Finally , the MOS also responds directly to control key depressions, such as
I CTRL 1+ G and I CTRL 1+ L mentioned above. These two examples are complete in
themselves but others, such as I CTRL 1+ S (which can be used to change the
screen colours in modes 0 - 6 and modes 128 - 134) need further keystrokes to
achieve their effect. Select, say, mode 3 and press:

I CTRL 1+ S followed by [3 4 [3 [3 [3

The five additional characters do not appear on the screen but the MOS
interprets them as a request to change the background colour (0) to blue (4).
Similarly:

I CTRL 1+ S followed by 7 1 [3 [3 [3

changes the text colour (7) to red (1).

I CTRL 1+ T, or a subsequent change of mode resets the screen to its default
values of white text on a black background.

The Welcome programs
This section describes how to connect your tape recorder and how to run the
programs and utilities provided on the Welcome tape and its disc equivalent.

Connecting a tape recorder

If you intend to use a disc unit from the outset, you should ignore these
instructions and refer instead to the section entitled Connecting a disc unit
below. Ideally, your tape recorder should be mains powered but if it is battery
powered make sure that the batteries are in good condition - you will
encounter difficulties if the recorder is not operating at the correct speed.

Your tape recorder lead will be one of those described in Appendix K. The single
plug corresponding to the end shown under the heading COMPUTER should be
inserted into the socket marked 'cassette' on the back of the computer:

CASSETIE

Plug(s) shown under the heading 'TAPE RECORDER' should be inserted into
the corresponding sockets on your tape recorder.

15

Motor control

It is normally desirable to allow the computer to start and stop the tape
recorder automatically but this facility is not available with all combinations of
tape recorders and leads. The procedure outlined below will enable you to
determine whether 'motor control' is available with your equipment.

1. Ensure that the equipment is connected to the mains and switched on . If you
have just been using the computer, execute a hard break (I CTRL 1+1 BREAK!) to
reset it to its initial state.

2. Place the Welcome tape in the recorder such that side 1 is ready to be played.

3. Now press the 'Fast Forward' button (variously labelled 'FF', 'F FWD' or
'» ') on the tape recorder and observe the effect:

If the tape winds forward, stop the tape recorder and fully rewind the tape -
your equipment does not provide the motor control facility.

If nothing happens, leave the tape recorder on 'Fast Forward', type:

*MOTOR 11 RETURN 1

and observe the effect:

If the tape now begins to wind forward, stop the recorder , fully rewind the
tape and (only when the tape is rewound) type:

*MOTOR 01 RETURN 1

Your equipment does provide the motor control facility.

If nothing happens, disconnect the lead from the tape recorder and check
that it is operating correctly on its own. Then reconnect the lead carefully
and repeat the procedure - if it fails again you should consult your
supplier or an Acorn dealer.

Tone and volume settings

In order to be reasonably sure of being able to load the programs from the
Welcome tape successfully, you should first adjust the tone and volume settings
on your tape recorder. For the majority of modern tape recorders, you should
select maximum 'treble response' (i.e . turn the tone control to its maximum)
and set the volume at about one third of its maximum.

Programs recorded on cassette tape consist of a series of rather unpleasant
sounds and, in many tape recorders, this sound is played back through the
internal speaker at the same time as it is transmitted along the connecting
lead. If possible, therefore, you should also switch the tape recorder's internal
speaker OFF. If the speaker cannot be switched off, an equivalent effect can

16

often be achieved by inserting a jack plug into the socket marked 'ear', if it is
not already occupied.

You must not turn the volume control down unless you can be absolutely
certain that it affects ONLY the speaker and, if all else fails , you will have to
muffle the speaker with some suitable material.

Connecting a disc unit
Chapter 8 contains instructions for connecting a variety of disc units to your
computer. In order to run the Welcome programs and utilities from the disc
provided, your disc unit must accept either 40- or 80-track 5.25in flexible
(floppy) discs .

The disc unit will have a flat connecting cable and connector which should be
inserted into the socket marked 'disc drive' on the front underside of the
computer:

AUXILIARY
POWER
OUTPUT

o

@ @
@

©

DISC
DRIVE

Some disc units are mains powered (in which case they will have a mains power
lead and a separate ON/OFF switch); other units draw their power from the
computer itself and the power cable should be connected to the auxiliary power
output socket shown in the illustration.

17

Running the Welcome programs

All the Welcome programs are written in BBC BASIC and in this section you
will encounter the keyword CHAIN, which is used to load and run BASIC
programs from either tape or disc. However , whilst your computer is fitted with
the necessary circuitry to enable it to control the operation of a disc unit, it has
been set up (initially at least) to handle only input from a tape recorder, under
the control of what is called the Cassette Filing System (CFS). Instructions
below relating specifically to the CFS are indicated by this symbol:

Disc users, on the other hand, will need the Advanced Disc Filing System
(ADFS) and the necessary instructions are indicated by:

f()()l Load the Welcome cassette into the recorder so that side 1 can be
~ played back. Reset the tape counter, then type:

18

CHAIN"WELCOME" I RETURN I
and press the PLAY button on the recorder.

The screen will first show the message:

Searching

then:

Loading WELCOME

When program WELCOME has been loaded, a short bleep will be
emitted from the computer's speaker, the screen will fill with a title
page and you will be asked the question:

Do you have motor controL? (Y/N)

If your equipment provides motor control, press Y and leave the PLAY
button on the recorder depressed - the computer will switch the motor
on and off automatically. If your equipment does not provide motor
control, press N and be prepared to press the STOP button on the
recorder when told to do so throughout the Welcome sequence.

A bleep accompanied by one of the messages:

?BLock , ?Data or Rewind tape

indicates a failure to read the contents of the tape correctly and you
should start again, using a different volume setting.

Remove the disc from its protective jacket and insert it into the drive
labelled (or specified in the disc drive's documentation) as drive O.
Leave the disc drive latch open and then type:

*ADFSIRETURNI

Wait for the disc drive to whirr and for the lamp adjacent to drive 0 to
come on, then close the latch. There will be a short delay while the
ADFS retrieves essential information from the disc and, when the >
prompt reappears, type:

CHAIN"WELCOME40"IRETURNI (for a 40-track disc unit)

or:

CHAIN"WELCOME80"IRETURNI (for an 80-track disc unit)

This will bring up the title page; the remaining programs will be loaded
from the disc automatically.

About the Welcome programs

f()()l As each of the Welcome programs is loaded, make a note of the tape
~ counter value in the blank, rectangular box adjacent to each program

name below. This will enable you to locate a particular program
quickly and easily if you wish to look at it again.

MODES I ~ loading time 2 minutes

MODES cycles through the 8 basic screen modes and displays examples of the
text, the available colours and, where possible the basic graphics capability.

CASTLE I ~ loading time 1 minute

CASTLE illustrates the computer's ability to produce high-speed, multi-colour
graphics. It uses a variety of shapes (squares, rectangles, circles and triangles)
filled with either plain colours or patterns.

CLOWN ~I _~ ~ loading time 1 minute

CLOWN is a similar illustration which incorporates other shapes.

SHAPES I ~ loading time 1 minute

SHAPES is a sequence of examples showing the basic shapes which can be
produced directly using built-in graphics commands. For the purposes of the
demonstration, each shape is drawn as a solid figure , each superimposed upon
the previous one, but it is also possible to produce outline shapes using solid or
broken lines.

19

CLOUD I L-_ ------' cg;;g] loading time 1 minute

CLOUD is a simple animated sequence in which various parts of a graphic
image are moved about the screen. The smootheness of movement is achieved
by switching between the normal and the shadow screens. Changes of colour
are used to produce a pleasing effect.

PATTERNS ,-I _ ------' cg;;g] loading time 1 minute

PATTERNS produces a sequence of complex figures, facinating to watch in
themselves , but which are then used to illustrate the speed with which the
computer can flood-fill an area with either a plain colour or a more complex
pattern.

KEYBOARD I cg;;g] loading time 2 minutes

KEYBOARD is an program designed to help you to familiarise yourself with
the operation of the keyboard. You will be shown a character which you must
find and press; the computer will time you and display your score out of ten in
each of five different tests, together with the average time that you take to find
each key.

TURTLE I
'-----~

cg;;g] loading time 1 minute

TURTLE is a program which allows you to control the movement of a screen
pointer (the turtle) using a simple set of commands. The turtle normally leaves
a trail in the form of a simple line and this feature can be used to create a
number of interesting graphic effects. In fact, the nine red function keys are
preprogrammed with sequences of commands to produce different shapes and
patterns.

The commands which may be given to the turtle are shown below - you may
also use the abbreviation given in brackets.

FORWARD (FD) n

BACK (BK) n

RIGHT .(RT) a

LEFT (LT) a

HOME

PENUP (PU)

PENDOWN (PD)

20

moves the turtle n steps in the direction in
which it is pointing.

moves the turtle n steps backwards.

turns the turtle right through a degrees.

turns the turtle left through a degrees.

returns the turtle to its starting position.

stops the turtle leaving a trail.

makes the turtle leave a trail.

PENCOLOUR (PC) c

HIDE TURTLE (HT)

SHOWTURTLE (ST)
CLEAN (CL)

CLEARTEXT (CT)

REPEAT n [... .]

changes the colour of the turtle's trail:

PENCOLOUR 0 leaves a blue trail;
PENCOLOUR 1 leaves a red trail;
PENCOLOUR 2 leaves a yellow trail;
PENCOLOUR 3 leaves a white trail.

makes the turtle invisible.

restores the turtle to the screen.
wipes the screen clean.

clears the area where commands appear.

enables a sequence . of commands to be
repeated n times. For example:

REPEAT 4 [FORWARD 100 RIGHT 90]

will draw the four sides of a square.

I CTRL I may be used to interrupt a sequence of commands.

ADVENTURE I [g] loading time 3 minutes

ADVENTURE is an adventure game in which you must explore a world
revealed to you by the computer - the aim is to find the hidden treasure.

The computer will describe your surroundings, possible routes you may take
and what objects (if any) are to hand. You give instructions using simple
commands of one or two words. For example, to 'go north', you could type
GO NORTH or simply NORTH. (In fact, NORTH, SOUTH, EAST, WEST, UP and
DOWN can also be abbreviated to N, S, E , W, U and D respectively.) You can
collect any objects you come across (such as a key) by typing TAKE KEY or
GET KEY.

IF you type INVENTORY (or simply INV) you will be given a list of the objects
which you are carrying.

Do not be afraid to experiment with a wide range of words - you may be
surprised to learn how many commands the program can understand !

AQUA I [g] loading time 2 minutes

Aqua attack is an arcade-style game in which you score points by destroying
various objects in an under sea scene. You control the movement of the black
submarine using either the keyboard or a joystick. (See Chapter 6 for
instructions for connecting joysticks).

Points are scored for each direct hit on an object but some require several hits
before they are destroyed. If you hit the rapidly-moving 'sea-snake', it splits

21

into two segments. You lose one of your three lives if you steer your submarine
into any object or if you are caught by either the octopus or a falling mine!

AQUA is the last of the Welcome programs although a number of other items
are contained on the second side of the cassette. At this stage, however, you
may wish to see some or all of the programs again. First reset the computer
with 1 CTRL 1+1 BREAK!, then proceed as follows:

You will need to rewind the tape either to the start or to the
appropriate tape counter setting. If your equipment provides motor
control, you will be unable to rewind the tape until you switch the
motor ON by typing:

*MOTOR 11 RETURN 1

When the tape is correctly positioned, execute the program of your
choice by typing:

CHAIN"program name"IRETuRNI

With the disc correctly loaded in the disc unit, merely type:

CHAIN"program name"IRETuRNI

The Welcome utilities
The Welcome disc and side 2 of the Welcome cassette contain a number of
utility programs. Three utilities, PANEL and TIMPAINT and DBASE are
described here, the remainder, which provide facilities which you may wish to
incorporate into your own BASIC programs, are described at the end of
Chapter 2.

The procedure for loading each utility is given under the appropriate section
heading.

22

If you have just finished running the Welcome programs you will need
to wind the tape forward (using *MOTOR 1 if necessary), remove the
cassette and replace it so that side 2 is ready to be played. Remember to
reset the tape counter.

You may use the commands described below to run any ofthe Welcome
utilities individually. However, you may call up a menu system which
provides access to all the utility programs by typing:

*ADFSIRETURNI
CHAIN"UTI LI TIES" 1 RETURN 1

You should refer to Chapter 2 for a description of the Programming
utilities and to Chapter 5 for a description of the Advanced Disc Filing
System utilities.

PANEL I - .J [ggJ loading time 2 minutes

PANEL is the first of the utilities provided with your computer - it is described
here because it enables you to carry out such functions as resetting the date
and time and, if necessary, reconfiguring your machine so that it selects
something other than the Cassette Filing System when it is switched on.

PANEL differs from the other welcome and utility programs in that it is
written, not in BASIC, but in the computer's own machine code. CHAIN,
which is the command for loading and running BASIC programs, is therefore
inappropriate and PANEL is executed using the command:

*RUN PANEL! RETURN I

~ *RUN PANEL may be abbreviated to *PANEL if you are using a disc W system. Since PANEL is not one of the standard commands recognised
o by the MOS, this line causes the computer to search the disc for a

machine code program with the name PANEL.

Once loaded, PANEL replaces the screen with a control panel consisting of a
series of boxes showing the settings which are selected when the computer is
switched on. These settings are held in a special, battery-backed memory
referred to as the CMOS RAM and they are maintained even when the
computer is switched off.

If your equipment does not provide motor control, stop the tape
recorder as soon as the control panel appears. Note the reading of the
tape counter - you will need it when you come to examine the
remaining utilities.

WARNING: READ THE FOLLOWING INSTRUCTIONS FULLY BEFORE
ATTEMPTING TO USE THE CONTROL PANEL. FAILURE TO DO SO MAY
RECONFIGURE YOUR MACHINE INTO A STATE FROM WHICH YOU
MA Y FIND IT DIFFICULT TO RECOVER.

23

The control panel layout is shown below.

@@~ Rat.. : 5
I@®(SHIFT-CAPS
,17I1Y'1 D .. I ay : 38

Filing Syst

D Cass .. tt ..

Econ .. t
Fil .. S .. rv .. r

8.254

Econ .. t
Print .. r

8.235

ntrol Panel
t+ •• &: HTll

The content of each of the boxes may be changed and the box to which changes
will be made at anyone time is outlined in blue; all the remaining boxes will
have a white outline. Initially, the box marked QUIT (1) is the one so marked
and depression of I ESCAPE I while QUIT is highlighted terminates execution of
the control panel program.

Movement between the various boxes is achieved using the four cursor control
keys (<c--, ~, t, t) and any necessary changes are made by using the same
keys in conjunction with simultaneous depression of either of the I SHIFT I keys.

The meaning of the various symbols shown in the control panel, a list of the
possible options and a discussion of their functions are given below. The 'default
settings' are those incorporated into the machine prior to its purchase.

(1) QUIT

This box provides a means of leaving the control panel, as descibed above.

(2) Vertical screen alignment

On some domestic televisions and (fewer) monitors, the top line of the screen
display is either totally or partially lost and selection of this option allows you to
shift the whole screen display up or down as necessary.

24

Default setting: no vertical screen shift

(3) Mode select

The computer can be configured to start up in any of the available modes (0 - 7
or 128 - 135).

Default setting: mode 7.

(4) Scroll-protect option

Under normal circumstances, the cursor will automatically wrap around to
the start of the next screen line whenever a particular line becomes full. If the
line happens to be the bottom line on the screen, the wrap around also causes
the screen to be scrolled up by one line (i.e. the top line disappears from view
and a new, blank line is created at the bottom.

This feature does not normally cause problems but one side-effect is that it is
impossible to type a character in the last position on the last line without
invoking the scroll. This option allows you to overcome this minor irritation by
effectively creating an 81st character position (or a 41st, depending on the
current mode) on the last screen line - this character position is used to hold the
cursor on the last line if a character is placed in the 80th (or 40th) position.

Default setting: no scroll-protect.

(5) Boot option

Disc and network users have the option of selecting the auto-boot option, which
enables a predefined sequence of actions to be carried out whenever
ISHIFTI+ IBREAKI is depressed. Normally, this involves executing the instructions
contained in the file with the special name mOOT, held either on the disc or in
the user's own area of the network file server. This option has no effect for
users of the Cassette Filing System.

Default setting: auto-boot OFF.

(6) Drive control parameters

This option allows the user to make adjustments to the way in which the disc
drive(s) connected to the computer are controlled. The value is a decimal
representation of a sequence of binary digits (bits) , each of which is used to
indicate a particular setting, further details of which will be found in the
technical documentation accompanying your disc unit. The default setting is
appropriate to most commonly-available disc units.

Default setting: 3

(7) Disc-type select

25

Your computer is capable of controlling the operation of most industry
standard disc drives, i.e.:

5.25in flexible ('floppy') disc drives;
3.5in or 3in mini-disc drives;
'Winchester' (hard) disc drives.

In this option, the top symbol denotes 5.25in flexible disc , 3.25in or 3in
mini-disc drive(s); the lower symbol denotes a Winchester drive.

In addition , each symbol contains a small indicator which may be switched ON
or OFF to indicate whether the Advanced Disc Filing System (see Chapter 5)
will carry out an automatic start-up sequence.

Default setting: 5.25in flexible disc, 3.25in or 3in mini-disc drive(s). No
automatic initialisation.

(8) Date

The CMOS RAM holds and maintains a perpetual calendar which caters for all
dates (including leap years) until the year 2000. This option allows the day,
month and year numbers held in the RAM to be altered if required.

Default setting: not applicable.

(9) Day and time

In addition to the day month and year numbers , the CMOS RAM holds a
representation of the actual day and the current time. Both can be altered by
selecting this option.

Default setting: not applicable.

(10) Keyboard status

This option allows the power-on setting of the caps lock and shift lock indicators
to be defined. It also allows the auto-repeat rate and the initial auto-repeat
delay to be specified.

Default settings: auto-repeat rate one tenth of a second;
caps lock ON;
auto-repeat delay half a second.

(11) Default language

In its standard form, your computer comes equipped with the BASIC language,
the VIEW word-processor, the ViewSheet spreadsheet package and the Acorn
Editor. It is possible (using the various internal ROM sockets and the two
external cartridge ROM sockets) to install other language systems, such as
PASCAL, COMAL, LOGO etc. This option allows any ofthe available language
systems, VIEW, ViewSheet or the Editor to be selected when the computer is
switched on.

26

Default setting: the BASIC language.

(12) Default filing system

In its standard form, your computer comes equipped with four different filing
systems:

The Cassette Filing System (CFS);
The ROM Filing system (RFS);
The Disc Filing System (DFS) - supplied for compatibility with BBC Model B
microcomputers;
The Advanced Disc Filing System (ADFS).

and this option allows any of the filing systems to be selected when the
computer is switched on.

The ROM Filing System must be selected if you wish to use software supplied
on cartridge ROMs (i.e. which plug into either of the two external cartridge
ROM sockets). The Disc Filing System is fitted in order to provide compatibility
with previous versions of the BBC Microcomputer (i.e. Models Band B+).

Default setting: Cassette Filing System

(13) RS423 baud rate

The RS423 serial interface is used, amongst other things, for connecting serial
printers and it is necessary to specify the rate at which data is to be
transmitted. This option defines the transmission (baud) rate which will be
selected when the computer is switched on.

Default setting: 1200 baud

(14) RS423 data format

As with the Drive control parameters described above, this value is a decimal
representation of a sequence of bits used to define the format of data
transmitted or received via the RS423 serial interface. Users wishing to make
extensive use of the RS423 interface should consult the Reference Manual for
further information on this setting.

Default setting: 4

(15) Printer options

A variety of different types of printer may be connected to the computer, some
of which produce automatic line-feeds , others of which do not. Those which do
produce an automatic line-feed will print in double spacing (i.e. with a blank
line between each printed line) unless the printer is instructed to ignore the
line-feed character generated by the computer. This option allows you to choose
whether line-feeds (or, indeed, any other character) will be ignored.

27

This option also allows you to specify the type of printer currently in use, i .e .
parallel, serial or (in the appropriate environment) a network printer . If you do
not have a printer connected to the computer, you may also select the printer
sink option, which ensures that programs will not fail if they attempt to direct
output to a printer which is not connected or not switched on.

Default setting: ignore line-feeds; parallel printer type.

(16) Sound option

The computer produces sounds through its internal speaker and this option
allows you to select either full or half volume for standard tones. Selecting half
volume has the additional effect of suppressing the sounds generated when the
computer is switched on.

Default setting: full volume.

(17) Co-processor options

Chapter 8 of this guide describes a number of co-processor options which
provide your computer with increased power and versatility. This option allows
you to specify if a co-processor is to be selected when the computer is switched
on.

The large symbol denotes a co-processor installed inside the computer's casing
(i.e. an internal co-processor) and the smaller symbol to its right denotes an
external co-processor unit (such as a BBC Microcomputer System Second
Processor).

Default setting: co-processor not selected.

(18) Default file server (Network users only)

If your computer is connected to a network of other BBC computers (using the
optional Advanced Network Filing System (ANFS», your storage and
communication needs will be met by one of the computers - referred to as the
file server. This option allows you to specify which network file server is to be
selected when the computer is switched on.

Default setting: 0.254 (i.e. station number 254 in network 0)

(19) Default printer server (Network users only)

Most networks incorporate a printer server which is a computer dedicated to
controlling the printed output from all stations in the network. This option
allows you to specify the identity of that network station.

Default setting: 0.235 (i.e station number 235 in network 0)

(References to 'network 0' in items 18 and 19 mean 'the normal network' - it is

28

possible to link different networks together by means of bridges and in these
cases, each individual network has a unique number.)

TIMP AINT I [::g:::gJ loading time 3 minutes
This program allows you to create and save your own pictures using many of
the advanced graphics features provided by your computer. To load
TIMPAINT, type:

CHAIN"TIMPAINT" I RETURNI

Once loaded, TIMPAINT shows the following display:

The boxed area on the left is the menu, from which you select the various
functions, colours and typestyles (fonts) that you wish to use. The larger,
empty area to the right is the 'canvas' on which you create your artwork.

The menu is divided into 3 columns:

the leftmost column determines which colour will be used for all subsequent
operations, the one selected being shown in the larger rectangle at the
bottom of the menu;

the middle column contains all the available functions, each identified by a
special symbol, such as camera, typewriter, scissors etc, each of which is
described below;

the rightmost column is further subdivided:
- the top four boxes contain the colour 'palette';

29

the boxes immediately below the palette contain the
four types of line which can be used;
the bottom four boxes show which font will be used when text is placed on
the screen.

Selections from the menu are made by moving the arrow pointer to the
required box and pressing 1 CTRL I. Slow movement is provided by the four
cursor control keys; fast movement (eight times normal) is provided by the
simultaneous depression of ISH 1FT I. (It is also possible to operate TimPaint using
a joystick, in which case the 'fire' button replaces the function of 1 CTRL I. See
Chapter 8 for instructions on connecting a joystick to your computer.)

The current menu selections are normally highlighted and, when TIMP AINT is
first loaded, the selections are:

black background;
white foreground;
spray can option (see below);

- joysticks off;
grid off;
solid lines;
normal font (Fa).

Thus, to select a background other than black, move the pointer to the box
containing the colour or pattern of your choice and press 1 CTRL I; the box at the
bottom of the menu will then fill with your selection.

You can change the palette (i.e. the range of available colour combinations)
using the four boxes at the top of the third menu column. For example, to
change red to green, move the pointer to the red box and keep pressing 1 CTRL 1
until the box shows green.

Similarly, the drawing function, line and type styles are selected by moving the
pointer to the appropriate box and pressing 1 CTRL I.

Whenever you move the pointer outside the menu area the arrow is replaced
with the symbol denoting the function you have selected. The various
procedures are described below, on the assumption that the corresponding
function has already been selected from the menu.

The spray gun allows you to draw one or several lines at a time, each dot of the
spray leaves one line behind it when it moves. Press IcopYI to increase the
number of dots and IDELETEI to reduce it. To use the spray gun, move to the place
where you want to start your line and press 1 CTRL I. Then, with 1 CTRL 1 held
down, move around the screen and release 1 CTRL I.

The hand will move the whole screen in any direction. To start, move the hand
symbol to a readily identifiable point on the screen and then press 1 CTRL I. With

30

1 CTRL 1 held down, move the hand to the position to which you wish to move the
original point and release 1 CTRL 1- the whole screen will then be moved. Note
that any part of the picture which is shifted off the screen will be lost.

The flood fill option can be used to fill any enclosed area of the screen with the
current colour. Simply move to any point within the area you want to fill and
press 1 CTRL I. Note that if you try to fill an outline which has a gap in it then the
colour will escape out of the gap and carry on until it hits a solid boundary or
the edge of the screen. Areas can be 'unflooded' by pressing 1 TAB I. Sometimes,
however, this operation does not only reverse the action of the flood but affects
other shapes on the canvas, depending on the colours used.

The line allows single lines to be drawn anywhere on the canvas. Press 1 CTRL 1
to start a line and release it when you are happy with its position.

Ellipse outlines and solid ellipses are produced by moving to the point which is
to be the centre of the ellipse and pressing 1 CTRL I. Then, while holding 1 CTRL 1
down, the width and height of the ellipse can be altered using the arrow keys.

Circle outlines and solid circles are drawn in a similar manner - press 1 CTRL 1 to
indicate the centre and alter the position of the circle symbol to produce the size
of the circle you want - then release 1 CTRL I.
The camera allows copies of any rectangular area of the canvas to be made.
Move the symbol to one corner of the area and press 1 CTRL I. Then hold down
1 CTRL 1 whilst moving the cursor keys to increase the depth and width of the
box. Release 1 CTRL 1 when you have enclosed the area to be copied. Pressing the
cursor keys now will move a second box which should be placed where you want
the copy to be put. The copy is made by pressing 1 CTRL I.
The scissors will move a rectangular area of the screen, replacing it by a block
of the background colour. This is preformed in the same manner as the copy
routine described above.

The polygon allows a series oflines to be drawn, each one beginning where the
previous one finished, thereby producing a continuous line drawing. Press and
release 1 CTRL 1 to begin and then each time a line is to be drawn.

The typewriter can be used to print text on the screen. On the canvas, the
typewriter symbol is replaced by a 'pencil ' and the start point for the the text is
identified by pressing 1 CTRL I. Any subsequent key depressions produce
characters in the screen in the current font and the end of the text is marked by
pressing IRETURNI. Note that text can only be placed between the starting point
and the right hand side of the canvas - it is not allowed to wrap round to the
beginning of the next line.

When selected, the joystick option allows the movement of the symbols to be

31

controlled by a joystick rather than by pressing the arrow keys. In addition the
fire button replaces the 1 CTRL 1 key.

The grid option restricts movement of the symbols to positions in an invisible
grid on the screen, making it easier to draw several circles with the same centre
point etc.

Loading and saving can be carried out by pressing L or S. This clears the menu
area and allows you to type in the name you wish to use.

To clear the screen and start again press 1 CTRL 1+1 TAB I. This will reset all the
options to their initial values.

DBASE I [gJ Loading time 2 minutes

This program is a very simple database which has been set up in the style of a
card-index address book. To load DBASE, type:

CHAIN"DBASE"I RETURN 1

Each 'card' contains 4 slots; one each for the name, address, telephone number
and birthday of an individual. Details of up to 100 people can be stored.

You can move through the database using <-- and --> which will move you on
back and forward one card respectively.

To move between the different slots within a particular card use t and t . The
current slot is always highlighted in black.

Initially the address book contains no information, each of the slots in each card
is blank. To enter information for a person you should move to, and then edit
each slot in turn by pressing E. Any characters you type will be placed in the
current slot until the slot is full or you press 1 RETURN I. The maximum number of
characters for each of the slots is:

name
address
telephone number
birthday

20 characters;
80 characters;
12 characters;
12 characters.

You can SA VE the information currently held in the database by pressing S at
any stage other than entering or editing a slot. S saves the complete database
with the name FILE.

r()()l Do not attempt to SAVE a database to the Welcome cassette itself
~ you will overwrite the next utility program.

The new file will automatically overwrite the previous version.

32

Pressing L will LOAD the information contained in FILE into the computer.

If you wish to edit the contents of an existing slot you can do it in a similar way
to entering new details - when you press E the current slot will be cleared so
that your new data can be typed in.

Once you have created your database, you can use the 'find ' facility to select
cards satisfying specific criteria. For example you can find someone's telephone
number by entering their name or you can find the names and addresses of,
say, all the people who have birthdays in the next month.

To do this you should initially move to the slot which corresponds to the piece of
information you know. In the first example this would be the 'name' slot, in the
second example it would be the slot marked 'Birthdy'. Press F and type in the
information you know, (for example SMITH or AUGUST) and press IRETURNI.

The computer will FIND the cards you are looking for. A message at the bottom
ofthe screen will say how many cards have been found and you will be moved to
the first one. Now when you use ~ and --c> you will move only between the cards
found for you by the computer.

If you do a further search then this will only be carried out on the cards found
previously. Hence a search for those named SMITH followed immediately by a
search for those whose address is in LONDON will find all the people who are
called SMITH and who live in LONDON.

Note that the computer will treat upper and lower case letters as the same (i.e.
BELL is considered to be identical to Be L L) and that it looks for an exact match
with what you have typed. Hence, searching for D BELL will not find entries
like D J BELL or DAVE BELL.

If you wish to return to the whole file then press R. This will restore the file for
you. The file is automatically restored if no cards are found in a search.

33

2. The BASIC Language

Writing a program
Languages such as English are too ambiguous to be used for communication
with a computer. Instead, all instructions are given using a computer language
consisting of just a few hundred words that the computer can interpret.

Your computer comes complete with the powerful and flexible computer
language, BBC BASIC. This is composed of a number of English-like words,
which make the language easy to learn and use. (You may already be familiar
with some other computer language such as Pascal. Chapter 8 describes how
you can expand your system to include such a language).

In the last section you learnt that the computer can obey some commands
immediately. For example, if you type:

PRINT "HeL Lo"IRETURNI

the computer displays the the word He L La.

PRINT is a BBC BASIC keyword that the computer recognises. It tells the
computer to display on the screen whatever follows the PRINT statement. The
most important BASIC keywords are described in this section of the book, and
a full list of all the keywords and their meanings is given in Appendix F .

You may already have found out what happens if you give a command to the
computer that it cannot interpret. For example, if you type:

PRINT "He L LolRETURNI

the computer responds with the message:

Missing"

The computer gives an error message to show that it cannot obey your
command because you have not followed the rules of the BASIC language. It is
easy to make mistakes when giving the computer instructions, and error
messages are helpful in tracking down and correcting these mistakes.

If you want the computer to carry out a calculation in BASIC, you can use
either the normal keyboard or the numeric keypad. Try:

PRINT 8+71 RETURN I

PR I NT 2121-9.51 RETURN I

34

Multiplication involves using the * symbol, and division, the I:

PRINT 12*9IRETURNI
PRINT 2S/2IRETURNI

Basic contains many other arithmetic functions which can be used to find
things like the square root of a number, or calculate its logarithm. Try typing:

PRINT SQR(9) I RETURN I
PRINT LOG(7S) IRETURNI

If you intend to use your computer mainly for carrying out many complex
calculations, you may find your needs are better met by ViewSheet which is
described in Chapter 4.

The screen is looking rather cluttered now, so type:

C LS I RETURN I

which is the BASIC instruction to clear the screen.

You have been giving commands which the computer obeys immediately. More
commonly, you will give the computer a series of numbered instructions to
obey. These instructions are stored in the memory and are called the program .

. The computer only obeys program instructions when you want it to do so.

You can see the difference between the methods of giving instructions by
typing:

113 PRINT "HeLLo"IRETURNI

This time nothing happens and the> prompt reappears.

At the start of the line you typed the number 10. This is called the line
number, and it tells the computer that the statement which follows is not to be
obeyed immediately. Instead the line is stored in the memory, as you can see by
typing:

LISTIRETURNI

Your one-line program is listed on the screen. You can make the computer
carry out or execute this very short program by typing:

RUNIRETURNI

Once the computer finishes executing the program, the > prompt returns to
the screen. This shows that the computer is ready to accept further commands
at the keyboard. The program is still stored in memory, as you can confirm by
typing:

LI S TI RETURN I

35

If you add another line to the program the computer automatically puts the
lines into line number order. For example, type:

3 PRINT "Thi s is another L i ne"IRETuRNI

and LIST the full program.

Program lines are usually numbered in tens as this makes it easy to insert
extra lines later. If you type:

RENUMBERI RETURNI

the computer automatically renumbers the program, making the first line 1,0.

Once a program is complete it can be saved onto cassette or disc so that it can be
used again. The Welcome software contains a series of programs which have
been saved in this way. You probably don't want to save the present program,
so type:

NEWI RETURN I

which tells the computer to 'forget' the program - you can confirm this by
trying to LIST it.

You may accidentally lose a program by pressing I BREAK!, or by typing NEW
before you realise that you have not saved a copy ofthe program. Normally, the
program can be recovered provided no new program lines have been typed. Use
the command:

OLDIRETURNI

to restore the old program.

A simple program using variables
Throughout this section and the remainder of the chapter, you will be required
to type a number of short programs and, for clarity, we shall omit the IRETURNI
symbol at the end of each line.

Type the following program in:

10 PRINT "Can you give me a number ";
20 INPUT yournumber
30 PRINT "You typed ";yournumber

and then RUN the program. The computer obeys line 10 and displays the
question:

Can you give me a number ?

The question mark is added automatically by the execution of line 20. The

36

INPUT statement makes the computer wait for you to type something - in this
case a number. Type:

61 RETURN 1

Once you have typed the number, line 30 is obeyed and the message displayed
IS:

You typed 6

Line 20 causes the computer to store your number in a variable, so-called
because its value can vary. Here the variable is called yournumber. You can
think of a variable as an internal pigeon-hole which the computer fills with a
value, in this case 6.

Whenever the computer comes across any reference to yournumber in the
program, it uses the current value of the variable. So line 30 causes the
computer to print You typed, then find the value of the variable yournumber,
and finally print that value, 6.

RUN the program again, inputting a different number, and watch the effect.
yournumber is a numeric variable - it can be used to store the value of whole
numbers, decimals, or negative numbers. Variables can be used in arithmetic
add these lines to the program and RUN it again:

40 PRINT "Twice ";yournumber;" is ";2*yournumber
50 PRINT "Subtract 5 from ";yournumber;" and you get ";yournumber-5
60 PRINT"Add 20 to ";yournumber;" and you get "; 20+yournumber

The value of a variable does not have to be input, it can be given directly. For
example, type:

LET height=2.1IRETuRNI

Then type:

PRINT heightlRETuRNI

PRINT height*21RETURNI

You can change your program to include a LET statement by adding these
lines:

35 LET yournumber=10
36 PRINT "But the new vaLue is ";yournumber

LIST the program so that you can see the order in which the computer obeys
the instructions, and then RUN the extended program.

In the versions of BASIC provided on some computers only very short variable
names like Q or AB are allowed. BBC BASIC, on the other hand lets you use

37

long variable names, which makes a program easier to follow and easier to
modify. For example, the following are all allowed statements:

~ET LengthOfCarpet=7.56

LET costof3Tins=1.21

LET SPEED_OF_CAR=60 (the underline character is on the same
key as the £)

Although all the examples above have LET before the variable name, its
inclusion is optional. The example program runs just as well if you type:

35 yournumber=10

As LET is optional you will find it is omitted in most programs.

Whilst variable names may be of any length, they must obey a few simple rules:

- The variable must begin with an upper- or lower-case letter, the £ or
underline character.

The other characters can be upper- or lower-case letters, the £ or underline
character, or numbers.

Variables that begin with Basic keywords such as PRINT or LET are not
allowed.

As all Basic keywords are capitalised, it is easy to avoid including keywords at
the start of a variable name by using only lower-case letters in the variable.
This also makes program listings more readable, as the variables stand out.

Integer variables

The variables described so far are known as real variables, because they can be
used to store real numbers - those with a decimal point. A real variable can be
used to store numbers with up to 9 figure accuracy.

The computer always uses the same amount of memory to store a real quantity,
even if the number stored there is an integer (a whole number). Some
programs only need integers, and using real variables wastes computer
memory. It also slows the program down, because the computer will treat 9 x 8
as 9.00000000 x 8.00000000 with all the extra calculation this entails!

An integer variable is another sort of numeric variable, and is used to store
only whole numbers in the range -2147483648 to 2147483647. Calculations
with integer variables are much more rapid, and the variables themselves use
less memory than real variables.

38

An integer variable always ends in a percentage sign, as shown in the program
below:

10 PRINT "Type any number ";
20 INPUT whoLe%
30 PRINT "You typed ";whoLe%

RUN the program and input, say 4.5. The result shows why you must not use
an integer variable unless you are certain that the value stored there will
always be a whole number.

The variables A % to Z% are known as the resident integer variables and
memory space is automatically given to these variables when the computer is
switched on, so no extra memory is taken up if they are used in a program.

The computer loses the values of other variables after a program is run, but the
values of A % to Z% remain unchanged, even after typing NEW or pressing
I BREAKI. They provide a means of passing information from program to program.
For example, the Welcome cassette uses a resident integer variable to tell each
program whether or not the user's cassette recorder has automatic motor
control.

There is one other special resident integer variable, @%. The value of @ % is
used to control the way the computer prints numbers. @% is described in more
detail on page 57.

String variables

The variables described so far are numeric variables - they can be used only to
store numbers. The computer can also store strings of characters (ie words and
phrases) in what are called string variables. A string variable always ends in
a dollar sign, as you can see in these examples:

Type........of_car$="Mini Metro"

CURRENCY$="Francs"

Weather$="Wet"

The characters within the inverted commas are called strings. Type in and run
this brief program:

10 PRINT "What is your name ";
20 INPUT name$
30 PRINT "PLeased to meet you ";name$

The string variable name$ in line 20 is used to store any name typed in. The
contents of name$ are printed out by line 30. A string variable can hold from
zero to 255 characters. You can prove this for yourself by running the program
a few times and inputting names of different lengths.

39

Any set of characters can be stored in a string variable, for example:

a...JI1i xed........st ri ng$="123%. abc@*"

However, you cannot carry out arithmetic on strings, even if the variable
contains only numbers. Thus, although:

exampLe$="365"

is an acceptable string,

PRINT exampLe$+5

is meaningless to the computer. The contents of a string variable are treated as
a series of characters. You cannot reasonably carry out arithmetic on a house
number or a shoe size, and numbers stored as a string fall into the same
category.

Help that BBC BASIC can give you
BBC BASIC has many features to make programming simpler. You may
already have made a few mistakes when typing the example
programs. If not, type:

10 PRONT "This is a mistake."IRETuRNI

and see what happens when you run the program. The most long-winded way
of correcting the error is to type the entire line again. Alternatively you can
edit or alter the line using the cursor control and I COpy I keys at the right-hand
side of the main keyboard.

Press i. As soon as you press the key, the cursor splits into two - the flashing
cursor is the copy cursor, which you can move around to copy text from
elsewhere on the screen; the white block is the write cursor, showing where
anything you type or copy will appear. The write cursor moves only after a
character has been typed or copied.

Move the copy cursor around until it is underneath the first character in the
erroneous line and then press I COpy I once. The '1' is copied into the character
position indicated by the write cursor. Now press IcopYlkey four times more to
gtve:

10 PR

You do not want to copy the next character because it is incorrect. Type I at
the keyboard, and it will appear on your new line then use ---? to move the copy
cursor until it is under the N in 10 PRONT . You can now copy the rest of the line
to give:

10 PRINT "This is a mistake."

40

(If you make any errors when copying, you can use IDELETEI to remove the most
recent characters on your new line). When you have copied the last character,
press 1 RETURN I, and the corrected version of the line will replace the old one.

You can move the copy cursor elsewhere on the screen at any time whilst
copying, so you can copy sections from several different lines to create a
completely new line. If you want to abandon editing a line half-way through,
press IESCAPE]. Do not press IRETURNI, as your old line will be replaced by the
partially-edited version.

It is worth spending some time learning how to edit lines, as it speeds up
program-writing considerably. However, once you begin to write longer
programs you will probably want to use the more powerful editing facilities
provided by the Editor, which is described in Chapter 6.

AUTO
Earlier you saw that program lines are usually numbered in tens. This leaves
plenty of free line numbers for any statements that are inserted later. If you
wish, the computer can automatically number lines for you. Remove the
current program using NEW and then type:

AUTO 1 RETURN 1

The computer prints 10 and waits for you to type a statement. Type the
following, remembering to pressing IRETURNI after each line . (You can still use
the editing facilities: most of line 40 can be copied from line 20, for example).

10 PRINT "A short program"
20 PRINT "What is your first number ". ,
30 INPUT first
40 PRINT "What is your second number ";
50 INPUT second
60 PRINT first;" pLus ";second;" gives ";first+second

After the last line the computer prints 70. As the program is complete, press
IESCAPE 1- you no longer want the computer to generate new line numbers. You
can now LIST or RUN the program.

AUTO can be used to begin numbering at any line number, with any interval
in between. The default interval is ten, so AUTO 100 produces line 100, 110,
120 and so on. AUTO 15,1 would produce line numbers 15, 16, 17 etc.

LIST

You have already used LIST, but an extended LIST command is also available
which is useful as a cross-reference in longer programs. Try typing:

LIST IF PRINTIRETURNI

41

and

LIST IF fi rst I RETURN I

In other words LIST IF displays only those lines containing the specified
sequence of characters.

DELETE
Sometimes you will find you need to remove lines from a program. Single lines
can be deleted by typing the line number and pressing IRETURNI. A number of
lines in sequence can be deleted using the DELETE command. Try typing:

DELETE 20,50IRETURNI
LISTIRETURNI

which deletes all line numbers from 20 to 50 inclusive

RENUMBER
If you have inserted many extra lines in a program you can tidy it up by using
RENUMBER to spread the line numbers out at intervals of 10. Renumbering
always begins from the first line of the program. Like AUTO, you can use
variations such as RENUMBER 100,5 to make the first line 100 and successive
lines 105, no, etc.

REM
The REM statement enables you to put remarks within a program to remind
yourself or others what parts of the program do. Sensible variable names can
make a program largely self-documenting, but REMs are useful to summarise
the purpose of a number of lines:

100 REM Lines 110 to 150 pLot a circLe

500 REM Find the Largest number and print it

The computer ignores any line beginning with a REM statement when a
program IS run.

Minimum abbreviations

If you are not used to a keyboard you may find it tedious to pick out the correct
letters to type PRINT, for example. The computer recognises BASIC keywords
if they are spelt in full or if an allowed abbreviation is used. Type:

P. "He L Lo" I RETURN I

This is exactly the same as:

PRINT"HeL Lo"IRETURNI

42

and is obeyed as such. Similarly, 1. is the abbreviation for INPUT. Use NEW to
remove the current program, select AUTO line numbering and then type in the
following program, which uses several abbreviated keywords:

10 P."Pick a number ". ,
20 1. choi ce
30 P."Number ";choice;"!"
40 P."A good seLection!"

Now LIST the program - abbreviations used in program lines are expanded to
their full length automatically when a program is listed.

The abbreviations for all BASIC keywords are given in Appendix F.

U sing the function keys

Most of the keys on the keyboard print a particular character whenever they
are pressed. Across the top of the keyboard are a group of red keys which act
differently. They are called the function keys. Each key can be programmed
to produce a character or string of characters when it is pressed.

For example, you can program I '0 I to produce the word PRINT by typing:

*KEY0 PRINTIRETuRNI

I " I can be programmed to produce INPUT if you type:

*KEY1 INPUTIRETuRNI

Now press I '0 I and I " I to see the effect. You will notice that after the
characters have been printed the cursor remains at the end of the line.
Sometimes it is useful to program a function key so that it behaves as iflRETuRNI
had been pressed after the characters are printed and this is achieved by
including the characters I M in the key definition. For example:

*KEY2 LISTIMIRETURNI

causes the current program to be listed whenever I '2 I is pressed. Some screen
modes only print 20 characters per line, which makes a listing very difficult to
read so it would probably be better to define I '2 I so that the computer
switches to mode 135, the most readable mode, before listing a program:

*KEY2 MODE1351MLISTIMIRETuRNI

It is useful to write a brief program that defines the keys. This program can be
loaded and run at the start of a computing session. The key definitions remain
set until:

the keys are redefined;

a *FX18 command is given, which clears the keys;

43

- there is a hard break (i.e. 1 CTRl 1+1 BREAK!)

Type in the following program, which sets all the function keys:

10*KEY0 MODE135IMLIST:M
20*KEY1 RUNIM
30*KEY2 MODE
40*KEY3 PRINT
50*KEY4 INPUT
60*KEY5 COLOUR
70*KEY6 MOVE
80*KEY7 DRAW
90*KEY8 PLOT
100*KEY9 GCOL

Later you may want to use key definitions of your own, but you will find the
above program useful in the next few chapters. The next section shows how you
can save the program you have just written so that it is available whenever you
need it.

Saving and loading programs
Most of the programs you have just typed in have been fairly short and do not
really do anything worthwhile. It is therefore not really worth keeping a
permanent copy on cassette or disc but, as you learn more about BASIC
programming, you will probably want to keep versions of your masterpieces so
that you can run them without having to retype all the instructions from
scratch.

Making a permanent copy of a program is referred to as saving a program and
the BASIC language provides a special command for this purpose. Its format is:

SAVE "name" 1 RETURN 1

where name (which must be enclosed in double quotation marks) is something
you choose to identify the program from all others.

The SAVE command works equally well if you are using cassette tape or disc as
a storage medium and the only difference is the number of characters which a
name may contain (see Chapter 5).

Note: You will need either a cassette (not the Welcome cassette) or a so-called
formatted disc (again not the Welcome disc) if you wish to carry out the
commands given below.

So, to SAVE the function key definition program you have just entered, you
could type:

SAVE "KEYS"IRETURNI

44

or possibly:

SAVE "KEYDE FS" 1 RETURN 1

or a SAVE command including any name you wish.

Load the cassette into the recorder and rewind it to the start of the
tape (not the transparent 'leader') then type the save command of your
choice.

As soon as you press IRETURNI the computer responds with the message:

RECORD then RETURN

which is to remind you to press the RECORD button on the recorder -
saving does not actually begin untillRETURNI is depressed.

There will be a momentary delay before the computer begins to store a
copy of your program and a message giving the program name and an
indication of its length is displayed while the transfer takes place.

A short bleep and the reappearance of the> prompt indicate that
saving is complete and, if your equipment does not provide motor
control, you will have to press the STOP button on the recorder.

Load the disc into the disc unit and then type the SAVE command of
your choice.

As soon as you press IRETURNI, the disc unit light comes on and the motor
begins to whirr before the program is saved.

The> prompt reappears when the program has been saved.

Note that SAVE merely transmits a copy of your program, it remains III

memory for you to RUN, LIST or modify.

The process of retrieving a program from either cassette or disc is referred to as
loading and, once again, the BASIC language provides a special command:

LOAD "name"IRETuRNI

Clearly, the named program must exist on the medium in question.

Take a deep breath and remove your function key definition program from
memory by using NEW.

Rewind the tape to the start. You will first have to use:

*MOTOR 11 RETURN 1

if your equipment provides motor control. Then type the LOAD
command containing the name of your function key definition
program.

45

As soon as you press 1 RETURN I, the computer will display the message:

Searching

and, after a short delay , you will see the name of your program
together with a slowly-moving count. A short bleep and the
reappearance of the > prompt indicates that loading is complete and, if
your equipment does not provide motor control, you should press the
STOP button on the recorder.

Simply type the LOAD command containing the name of your function
key definition program and press IRETURNI. The> prompt will reappear
as soon as the program is loaded.

LIST the program to prove that it has been retrieved.

Note that the LOAD operation replaces the current program, so you must be
sure that you have SAVEd it if necessary.

To program or not to program
In the previous sections you have been introduced to a few of the BASIC
programming facilities on the computer. You may be eager to learn more - in
which case the next few sections are for you.

Or you may feel you have learned quite enough about programming. Is it really
necessary to know so much before you can use the computer?

It is worth emphasising at this stage that it is up to you how you choose to use
your computer.

Many thousands of people enjoy computing as a hobby. They write programs to
play games or work out the monthly budget. They attend computer clubs and
swap hints and tips with other enthusiasts.

Other computer owners never bother to learn beyond the rudiments of
programming. When they want software to catalogue their stamp collection,
they buy a pre-written program from a local shop or via mail order. Rather
than struggling to write a program to play noughts and crosses they prefer to
purchase complex games such as Elite, which have taken professional
programmers months to produce.

Some computer owners play the occasional game but primarily use the
computer for more serious purposes. They prepare and print out letters with
the help of a word processor, use spreadsheets to help them make financial
decisions, and store important information on tape or disc.

The computer is a tool; complex and sophisticated, but a tool nonetheless. Do
not feel that you must learn to program to use it properly. Your computer
contains other powerful facilities which are described in later sections. A wide

46

ra nge of softwa re to meet virtually any need is available - you do not need to
progra m to find the computer a valuable and useful aid.

The next few sections demonstrate some of the possibilities of programming.
They are intended only as an introduction to BASIC, but you will learn more
from them if you experiment with the example programs that are listed.
Change the values of the variables or add some lines of your own. Don't worry if
you make a mistake that seems to keep the program going forever. You can
always press IESCAPE I, which stops the program and brings back the > prompt to
show you can again input instructions.

Simple graphics
The computer provides eight different screen display modes and the Welcome
software showed you one of the most obvious differences between the modes -
the number of characters that can be displayed on a line. The Welcome
software also demonstrated how some modes allow both the printing of text and
the display of graphics.

The modes differ in a number of important ways. Some of these differences will
be explained in this chapter, but a full list of the characteristics of the modes is
also provided in Appendix A.

Two sets of modes are available, modes ° to 7 and modes 128 to 135. Each
low-numbered mode N has a high-numbered counterpart mode N + 128 which
behaves visibly in exactly the same way and has the same features . For
example, mode 7 and mode 135 are identical in appearance.

You should use modes ° to 7 if you are writing programs which may also be run
on the original BBC Model B microcomputer. In the Master Series computers,
modes 128 to 135 leave more memory free so that longer programs can be
written. For this reason you should always use the high-numbered modes but,
in the example programs that follow, all references to a particular mode apply
equally well to its lower-numbered counterpart.

Modes 128, 129, 130, 132 and 133 are known as graphics modes because they
allow the use of both text and graphics. Modes 131 and 134 are text-only
modes. Mode 135 allows the use of graphics, but the commands involved are
very different and so are dealt with in a separate section beginning on page 94.

In each of the graphics modes, points on the screen are given coordinates so
that their position can be identified.

47

1023

100 B
_0

640 A
0

800

512

1000 C
';' 20

1279

The point A in the figure has coordinates 640 across and 512 up, roughly the
middle of the screen. The point B is at position 100,800 and C is at 1000,20.

Type in and run this program:

10 MODE 128
20 MOVE 100,100
30 DRAW 800,100
40 DRAW 800,900
50 DRAW 100,100

Line 10 changes to a graphics mode, and as a result the invisible graphics
cursor is automatically positioned at point 0,0 - the bottom left corner of the
graphics screen.

Line 20 causes the computer to move to 100,100 without drawing a line.

The DRAW command draws a line from the last point visited (which was
100,100) to 800,100 . The remaining DRAW commands produce a series of
joined lines making a triangle.

Earlier you saw that after running a program you can clear the screen by
typing:

C LS I RETURN I

You can also clear the screen with:

C LG I RETURN I

Although both commands appear to have the same effect, CLS actually clears
the text screen and CLG clears the graphics screen. Normally these are exactly
the same and fill the whole screen. Later you will see that the areas in which

48

text and graphics appear can be separated, and so it is useful to have two
commands for clearing the screen.

The lines drawn in mode 128 are the finest that your computer can produce,
and so this mode is used whenever very accurate high-resolution graphics are
needed. The same program runs in other graphics modes , as you can see if you
edit line 10 and then run the program again, i.e. type:

10 MODE 1291RETURNI
RUN I RETURN I

This time the lines produced are thicker ~ mode 129 is a medium-resolution
mode. The main advantage it offers over mode 128 is that it allows the display
of four colours at the same time. You can change the colour of the lines by
adding:

35 GCOL 0,1
45 GCOL 0,2

and running the program again. GCOL is used to select the colour to be used in
the DRAW statement. The number following GCOL 0, is related to a particular
colour in each mode. In mode 129:

GCOL 0,0 gives black lines
GCOL 0,1 gives red lines
GCOL 0,2 gives yellow lines
GCOL 0,3 gives white lines

Once a colour has been selected, it is automatically used in all further DRAW
statements until a new GCOL command is given.

GCOL can also be used to change the background graphics colour. For
example, type:

MODE 1291RETURNI
GCOL 0,130IRETURN!
C LG ! RETURN!

This sets the background to yellow, and then clears the whole graphics screen
to that colour. All GCOL numbers greater than 127 change the background
colour.

RUN the program again after editing line 10 to be:

10 MODE 130

Mode 130 is a low-resolution mode giving much thicker lines, but up to 16
colours can be displayed simultaneously, eight of these being flashing colours.

Note that GCOL 0,2 gives green and not yellow in this mode. The numeric

49

references to colour are not the same in all the graphics modes. You must refer
to Appendix A for the correct GCOL number to produce a particular colour.

In mode 130, GCOL 0 can be followed by any number from 0 to 15 to select a
colour. Try changing the GCOL statements to see its effects.

The PLOT command
The PLOT command is an all-purpose drawing command. MOVE and DRAW
are special examples of PLOT. Because moving and drawing are used so
frequently, the PLOT commands that produce these effects have been given
equivalent keywords:

PLOT 4,100,100 is the same as MOVE 100,100

PLOT 5,800,100 is the same as DRAW 800,100

The first number after PLOT decides how the lines are plotted. PLOT
commands enable rectangles, parallelograms, circles, segments, sectors, arcs,
triangles or ellipses to be drawn in outline, solid colour or patterned. You have
seen this demonstrated in the Welcome software. A program to draw a solid
rectangle is:

10 MODE 129
15 REM move to one corner of rectangLe
20 MOVE 100,100
25 REM move to diagonaLLy opposite corner
30 PLOT 101,800,900

PLOT 101 tells the computer to draw a rectangle with opposite corners at the
last point visited and the present point:

800

90

100
--+

j100

50

Change line 20 and RUN the program again:

20 MOVE 300,100

You may not be surprised to see that the rectangle gets smaller because the
position of the first corner has changed. If you wanted to plot a whole series of
identical rectangles in different positions, you would have to calculate the new
position of the opposite corner for every rectangle. There is, however, another
PLOT command which avoids this problem by describing the rectangle slightly
differently.

Instead of giving the exact or absolute position of a point on the screen, its
distance from another point can be given - this is the relative position of the
point:

300 B , .

500
500 A .

1
200

The point A in the figure is at 500,200. The point B is 200 to the left and 300
above A, so its relative position is -200,300. This program draws a rectangle
using A and B as the positions of the two corners:

10 MODE 129
20 MOVE 500,200
30 PLOT 97,-200,300

Now change line 20 and RUN the program again:

20 MOVE 300,100

PLOT 97 tells the computer to draw a rectangle using the two points given,
with the second point being relative to the first point. This means that the
computer always draws the same size rectangle, wherever the first point is
placed. Relative positioning is very useful if a drawing needs to be moved
around on the screen.

51

The PLOT commands are very versatile and provide a great deal of control over
how images are drawn. Lines or figures can be drawn absolutely or relatively,
solid or dotted, in the foreground or background colour. Figures can be drawn
in outline or as solid blocks of colour. A full list of the PLOT commands is given
in Appendix H .

A circle can be drawn by giving the position of its centre and a point on its
circumference:

10 MODE 1
15 REM coordinates of centre
20 MOVE 300,300
25 REM coordinates of point on circumference
30 PLOT 149,550,300

Here is an example of a PLOT command that draws a solid figure. Edit line 30
to:

30 PLOT 157,550,300

and RUN the program again. You can get a red circle by adding:

16 GCOL 0,1

Other PLOT commands enable you to create solid rectangles, ellipses, sectors of
a circle, and so on. More complex figures must be built up using these simpler
shapes. Any shape can be flood filled with colour once it has been drawn:

1 REM Teddy - an unfinished masterpiece
10 MODE 130
19 REM seLect red
20 GCOL 0,1
29 REM draw circuLar head
30 MOVE 500,500
40 PLOT 149,800,500
49 REM right eye
50 MOVE 620,600
60 PLOT 149,680,600
69 REM Left eye
70 MOVE 380,600
80 PLOT 149,440,600
89 REM rectanguLar nose
90 MOVE 460,600
100 PLOT 101,540,400
109 REM use arc for the smiLe
110 MOVE 500,600
120 MOVE 350,350
130 PLOT 165,650,350

52

139 REM change to yeLLow for fLood-fiLL
140 GCOL 0,3
150 PLOT 133,500,320

You might like to finish the picture by adding ears and colouring the eyes.

The Teddy program runs in mode 130, which allows 16 different colours. In
other modes, such as mode 129, only four colours can be displayed at the same
time. The range of colours is increased by four extra patterns made up of
various colour combinations. For example, in mode 129:

GCOL 16,0 red-orange
GCOL 32,0 orange
GCOL 48,0 yellow-orange
GCOL 64,0 cream

These colours are produced regardless of the second number used. The effect of
the commands varies from mode to mode, as the patterns are built up from the
colours available in that mode. Change the GCOL commands in the Teddy
program to see some of the patterns available in mode 130.

You can create your own colour patterns in place of those provided - this is
described on page 103.

Printing text
Text can be displayed in any of the eight modes, but the number of characters
per line varies from mode to mode, and can be 20, 40 or 80 characters. Try:

10 MODE 128
20 PRINT "Here is a sentence"
30 PRINT "to demonstrate printing."

Edit the program and run it a few times with line 10 altered to produce mode
129, 130 or 135. Mode 135 gives the clearest display. If you are using a TV
rather than a monitor you may find mode 128 text rather hard to read.

After obeying any PRINT statement the computer moves to the start of a new
. line unless instructed to do otherwise. Run the program again after changing
line 20 to:

20 PRINT "Here is a sentence";

The semi-colon at the end of the line tells the computer to stay on the same line
after printing the string. The result is:

Here is a sentenceto demonstrate printing

The semi-colon is useful if you are printing a variable within a sentence, and
want all the text to be on the same line. Add these lines:

53

40 my---.age=105
50 PRINT "I am ";my---.age;" years old."

The spaces within line 50 are very important, as they stop the text running
together untidily , as in the first example.

Including apostrophes causes extra blank lines to be printed. For example:

50 PRINT I "'1 am ";my---.age;" years old."

prints two blank lines before the actual line of output.

The position of any character on the screen can be described in terms of its text
coordinates. Text coordinates are given relative to the top left of the screen,
unlike graphics. In mode 135, the text coordinates are:

0 ----------------~X~--------------~'39
0.-----------------------------------,

y

24L---------------------------------~

Notice that although there are 40 character positions on a line, the positions
are numbered zero to 39, and the lines are numbered similarly.

The PRINT TAB statement enables you to control the position at which
printing begins. Use NEW to remove the current program then type:

10 MODE 135
20 PRINT "0123456789"
30 PRINT TAB(5);"An example of TAB."

When run, this gives:

0123456789
An example of TAB

Printing begins at character position 5 on the line, ie the 6th column. More
than one TAB can be used on the same line, but if the computer has already

54

moved beyond the r equired TAB position it begins a new line. For example:

30 PRINT TAB(5);"An";TAB(10);"example";TAB(15);"of";TAB(20);"TAB."
gIves:

0123456789
An example

of TAB.

The computer is a lready at character position 17 when it comes to the TAB(15)
command, and so it starts a new line .

By also giving the line number, you can use PRINT TAB to place text
anywhere on the screen, for example:

10 MODE 135
20 PRINT TAB(8,24) "It can go at the bottom"
30 PRINT TAB(14,0) "Or the top"
40 PRINT TAB(1,11) "Or the left";TAB(27);"Or the right"

Line 30 should remind you that although mode 135 has 25 lines these are
numbered from zero to 24. Line 40 shows that once you are on a line you can
use TAB as before without referring to the line number.

Printing text in colour

The computer lets you change the colours used III printing text with the
COLOUR command. Type:

MOD E 1291 RETURN 1
COLOUR 11RETURNI

The number after COLOUR indicates red in mode 129, and tells the computer
that the new text foreground colour is to be red. Anything you type from now
on will be printed in red. Type:

COLOUR 21RETURNI
COLOUR 1291 RETURN 1

The first COLOUR command changes the text colour to yellow, and the second
changes the background colour to red. All text from now on will be printed as
yellow on red. You can change the entire screen to the new background colour
by typing:

CLS 1 RETURN 1

The COLOUR commands apply in all modes except modes 7 and 135. As with
GCOL, the numbers used to indicate a particular colour vary from mode to
mode. Consult Appendix A for a full list of the numeric colour references for
each mode.

55

More advanced print formatting

When producing a table of figures, it is useful to print at particular positions
without having to use TAB every time. If the printed items are separated by
commas the computer does this automatically:

10 MODE 135
15 REM Lines 20 & 30 heLp
16 REM to show character positions
20 PRINT TAB(10) "111111111122222222223"
30 PRINT "0123456789012345678901234567890"
40 PRINT 1.23,4.567,89

Running the program gives:

111111111122222222223
0123456789012345678901234567890

1.23 4.567 89

Each number is printed at the right hand side of a column 10 characters wide.
These columns are called fields and the width of each field is set to 10
characters when the computer is switched on.

Text is printed to the left of the field, as you can see by adding:

50 PRINT "HeLLo","my","friend"

which gives:

111111111122222222223
0123456789012345678901234567890

1.23 4.567 89
HeL Lo my friend

If a number or word is longer than the field width, the item following is printed
in the next empty field. For example:

111111111122222222223
0123456789012345678901234567890

1.23 4.567 89
CongratuLations my f ri end

The field width can be altered to vary from zero to 255 characters:

10 MODE 135
18 REM set fieLd width to 8 characters
19 REM giving 5 fieLds across the screen
20 @%=&08
30 PRINT TAB(8) "Income from saLes regions"
40 PRINT "'Jan", 1234.56,789,123.45,678.9
50 PRINT "Feb",234.5,67.89,12,3456.78

56

@% in line 20 is a special variable which controls the printing of numbers. In
this case it is used only to reduce the field width to eight characters. The result
is very untidy and confusing because the numbers are not aligned vertically
about the decimal point. Make line 20:

20 @%=&020208

This tells the computer to print each number to two decimal places and with a
field width of eight.

@ % offers a great deal of control over the way the computer prints numbers,
and is discussed in more detail in the Reference Manuals. Note that once @ % is
set, its effects remain until you reset @%, perform a hard break, or switch the
computer off.

Text and graphics

It is sometimes useful to restrict the printing of text to part of the screen. You
saw an example of this in the Welcome software. The Turtle Graphics
(TURTLE) program lets you type commands at the keyboard, but these are
printed on the bottom four lines only, so that the screen display is not
disturbed.

Type:

MODE 135IRETURNI

You can set up a text 'window' within which text is displayed by typing:

VDU 28,12,15,30, 101RETURNI

Type a few characters at the keyboard (anything will do). The text is printed
inside a window in the middle of the screen.

The VDU 28 command is one of a series of VDU commands which enable you to
control the way text and graphics are displayed on the screen. VDU commands
can be used to change the colours of text or graphics, move the cursor, clear the
screen, etc. VDU 28 is used specifically to set up a text window.

The first two numbers following the VDU 28 give the position of the bottom left
character within the new text window. The remaining two numbers give the
position of the character at the top right of the text window (see illustration at
the top of the next page).

Once you have created a text window, the top left position within the window
becomes 0,0. All PRINT TAB commands are relative to this new position, as
you can see if you type:

C LS I RETURN I
PRINT TAB(4,3)"The middLe"IRETuRNI

57

o
o

24

15

30

12

39

10

I

le~1 ~i~c\~~
I I I I I I I I

A graphics window can be set up in any mode which allows the use of graphics.
Type:

MODE 1291RETURNI
VDU 24,160; 128; 1118; 1000; IRETURNI

VDU 24 is followed by the graphics positions which are at the bottom left and
top right of the new window:

1 1 18

graphics window
10 pO

160 •

1128

In this case graphics coordinates are used - notice the numbers are separated
by semi-colons unlike the VDU 28 command.

You can see the graphics window by typing:

58

GCOL 0,130IRETURNI
C LG 1 RETURN 1

Although graphics are now displayed only within the window, the whole screen
is still used for text. To completely separate text and graphics we must set up
both a graphics and a text window. Create a text window below the graphics
window by typing:

VDU 28,5,31,34,28IRETURNI

Change the background text colour to red:

COLOUR 1291RETURNI

C LS 1 RETURN 1

Type in some MOVE and DRAW commands. The text is displayed within the
text window, and any lines drawn only appear within the graphics window.

After a VDU 26 command the whole screen is used for text and graphics once
again , so return things to normal by typing:

VDU 261 RETURN 1

Note that using a MODE command has the same effect as it automatically
destroys all windows.

Printing text at graphics positions

TAB is used to print characters on the screen at any text coordinate. It is
sometimes helpful to position text more accurately on the screen than PRINT
TAB allows, especially if graphics are also used.

In modes in which graphics can be used, text can be printed at graphics
coordinates after a VDU 5 command. This program gives a three dimensional
effect by printing the same message twice and slightly off-setting the second set
of characters which are printed in a different colour:

10 MODE 1
20 PRINTTAB(16,1S)"H eLL 0"

30 VDU 5
40 GCOL 0,1
50 MOVE 516,540
60 PRINT"H eLL 0"

70 VDU 4

Line 20 prints characters using the usual text coordinates. The VDU 5 in line
30 joins the text and graphics cursors. In line 50 MOVE is used to position the
text, which can now only be printed at graphics coordinates. Finally, the VDU 4
command returns the text cursor to normal so that PRINT TAB is usable
agam.

59

Input
Earlier you saw that you can type in information while a program is running if
the program contains an INPUT statement:

10 MODE 135
20 PRINT "How oLd are you";
30 INPUT age
40 PRINT "So you're ";age;" years oLd."
50 PRINT "You don't Look it!"

The INPUT statement in line 30 causes the computer to print a question mark,
and then wait for information to be typed at the keyboard. The computer
expects a number to be typed, because age is a numeric variable. Once IRETURNI

is pressed, the computer stores the value typed in the variable age. If you type
text rather than a number, the computer assumes the number is zero.

If you want to input text, you must use a string variable in the INPUT
statement:

10 MODE 135
20 PRINT "What 1S your name";
30 INPUT name$
40 PRINT "Hello ";name$;" and how are you?"

You can use a single INPUT statement to ask for several inputs:

10 MODE 135
20 PRINT "What 1S your name and age ";
30 INPUT name$, age
40 PRINT "HeLLo ";name$;". So you are ";age;" years oLd."

In this case the computer will expect two inputs, one a string and one a numeric
variable. They can either be typed in separated by commas, or both can be
followed by RETURN.

The PRINT statement just before the INPUT is there to give a message to
remind you what you should type. This message can be included within the
INPUT statement:

10 MODE 135
20 INPUT "What is your name ";name$
30 PRINT "HeLLo ";name$;". PLeased to meet you."

INPUT ignores any spaces at the beginning of an input or anything typed after
a comma:

What is your name? Nero,Emperor of Rome
HeLLo Nero. PLeased to meet you.

60

If you need to type in text that includes spaces at the sta rt or may include
commas, you should use INPUT LINE rather than INPUT:

20 INPUT LINE "What is your name ";name$

This g ives:

What is your name? Nero,Emperor of Rome
HeLLo Nero,Emperor of Rome. PLeased to meet you.

GET and INKEY

In some programs, such as games, the computer needs to respond as soon as a
key is pressed. Programs like this use GET or INKEY rather than INPUT
statements. GET waits until a key is pressed before continuing:

10 MODE 135
20 PRINT "Press any key to continue"
30 chosen=GET
40 PRINT "The program has ended."

INKEY causes the computer to wait for a key to be pressed within a fixed time:

10 MODE 135
20 PRINT "Press any key to continue"
30 PRINT "You have 3 seconds onLy!"
40 chosen=INKEY(300)
50 PRINT "The program has ended."

The timing is in hundredths of a second, so line 40 makes the computer wait for
a key depression for three seconds (300 hundredths of a second). If no key is
pressed within three seconds, the computer moves on to the next line of the
program. If a key is pressed, the computer immediately continues with the next
line of the program.

ASCII codes

Both GET and INKEY produce what is called the ASCII code of the depressed
key. Internally, the computer uses a number from 0 to 255 to represent each
character that it stores in its memory. This number is the character's ASCII
code. For example, the ASCII code for A is 65, B is 66 and C is 67, so the
computer would store the word CAB as the numbers 67, 65 and 66.

The computer can give you the ASCII code for a character. For example:

PRINT ASC (" A") I RETURN I

prints 65. Note that ASC works with single characters only. If you want the
ASCII codes for a series of characters you should consult the table showing the
full character set in Appendix B.

61

In the previous two programs the ASCII code is stored in the variable chosen. If
no key is pressed before the INKEY time limit is reached, chosen is given the
value -1.

GET or INKEY do not automatically display the character typed at the
keyboard. This is useful in programs where printing would spoil the screen
display. If you do want to print the character, use PRINT CHR$ to convert the
ASCII code into a string:

10 MODE 135
20 PRINT "Type any character - ";
30 chosen=GET
40 PRINT CHR$(chosen)
50 PRINT "You typed ";CHR$(chosen)

VDU followed by an ASCII code has the same effect as PRINT CHR$. For
example, both PRINT CHR$(65) and VDU 65 would print the letter A. If you
type:

VDU 66,66,67IRETURNI

the computer prints:

BBC

The ASCII codes for the characters start at 32. Lower codes are used to give
commands to the computer, as you have seen with VDU 26 and VDU 28.

Structured programs
In the last section you were introduced to some of the most commonly used
commands from BBC BASIC. Most of these commands dealt with the ways in
which you can communicate with the computer while a program is running,
and how you can effect the way the computer displays information on the
screen.

You have already seen that programs are much more readable if they contain
sensible variable names. Additionally, all the example programs have used
only a single statement per program line. Programs can be written to contain
more than one statement per line, provided the statements are separated by
colons:

10 MODE 135:PRINT "Type any character - ";:chosen=GET:PRINT CHR$(ch
osen):PRINT "You typed ";CHR$(chosen)

You can imagine that a program with many multi-statement lines like this is
not easy to follow!

The next section deals with the facilities BBC BASIC offers to simplify the
development and modification of programs. So far you have only used programs

62

made up of a sequence of instructions. The computer can also repeat
instructions, or choose which of several instructions it will obey. All programs
are built up from a combination of the three program structures sequence,
repetition and choice. The next few sections describe how you can use these
structures in BBC BASIC.

Planning your programming

The programs in the earlier chapters have all been fairly short, but the easiest
way to write more complex programs is to organise them differently.

Look back at the Teddy program on page 52. The program consists of a
sequence of instructions which the computer obeys in line-number order. A
longer program might contain several hundred lines, and it simpler to write ifit
is broken into small sections or procedures.

This program shows the use of procedures:

1 REM draw butterfLy
10 MODE 130
20 PROCbody
30 PROCLef~ing
40 PROCrigh~ing
50 END
60 DEFPROCbody
70 GCOL0,2
80 MOVE 640,500
90 MOVE 700,500

100 PLOT 205,640,700
110 ENDPROC
120 DEFPROCLef~ing
130 GCOL 0,1
140 MOVE 200,200
150 DRAW 600,500
160 PLOT 85,200,800
170 ENDPROC
180 DEFPROCrigh~ing
190 GCOL 0,1
200 MOVE 1080,200
210 DRAW 680,500
220 PLOT 85,1080,800
230 ENDPROC

63

The main program is really only lines 10 to 50:

10 MODE 2
20 PROCbody
30 PROCLefL-wing
40 PROCrighL-wing
50 END

Lines 20 to 40 are known as procedure calls. Each PROC tells the computer
not to obey the next line number. Instead it must search the program for a
DEFinition of the PROCedure (DEFPROC) with the correct procedure name,
and obey the instructions in that procedure.

For example, after line 20 the computer moves to line 60 and then executes
lines 70 to 100 which draw the butterfly's body. Line 110 is the END of the
PROCedure (ENDPROC).

After carrying out the procedure, the computer returns to the line after the
procedure call to carry on with the program. Here the line following line 20 is
another procedure call. PR o Cleft _ wing draws the butterfly's left wing, and
the computer then executes PROCright _ wing, which draws the right wing.

The END in line 50 tells the computer that the program is finished . END is
optional in some programs, such as the Teddy program. It must be used here as
otherwise the computer will carry on and execute line 60 (and attempt to draw
the butterfly body again!

The order in which procedures appear does not matter and you can place
procedures wherever you want within a program, except at the very beginning.
Procedure names follow much the same rules as for variable names, although a
procedure name can begin with a number.

A procedure can be called more than once in a program, saving you the trouble
of repeating program lines:

10 MODE 130
20 PROCvariabLes
30 PROCengine
40 END
50 DEFPROCvariabLes
60 scaLe=0.6
70 xstart=300
80 ystart=200
90 xdoor=360
100 xdist=900
110 ydoor=500
120 ydist=300
130 xbump=300*scaLe

64

140 bump--rad=50*scaLe
150 xchim=100*s caLe
160 ychim=200*s caLe
170 chimstart=60*scaLe
180 xdoorstart=xstart+exdist*scaLe)
190 xwind=xdoo rstart-30*scaLe
200 ywind=ysta r t+eydist-30)*scaLe
210 xwinddist=300*scaLe
220 ywinddist=200*scaLe
230 wheeL-dist=130*scaLe
240 whee Lrad=100*sca Le
250 ENDPROC
260 DEFPROCengine
270 PROCrectangLeexstart,ystart,xdist*scaLe,ydist*scaLe,1)
280 PROC rectangLeexdoorstart,ystart,-xdoor*scaLe,ydoor*scaLe,1)
290 PROCrectangLeexwind,ywind,-xwinddist,ywinddist,6)
300 PROCrectangLeexstart+chimstart,ystart+eydist*scaLe),xchim,ychim,1)
310 PROCci rc exstart+whee L-di st,ystart,whee Lrad,4)
320 PROCcirce xdoorstart-wheeL-dist,ystart,wheeLrad,4)
330 PROCcircexstart+xbump,ystart+eydist*scaLe),bump--rad,1)
340 ENDPROC
350 DEFPROCrectangLeex,y,xmove,ymove,coL)
360 GCOL 0,coL
370 MOVE x,y
380 PLOT 97,xmove,ymove
390 ENDPROC
400 DEFPROCcircex,y,rad,coL)
410 GCOL 0,coL
420 MOVE x,y
430 PLOT 153,rad,0
440 ENDPROC

The procedures to draw the engine use relative MOVE and DRAW commands.
PROCvariables sets the values of the variables used throughout the rest of the
program . You ca n change the size and position of the engine by changing the
values of scale%, xstart% and ystart%.

Information can be passed to a procedure from the main program :

10 MODE 130
20 PROCcircLee400,300,200)
30 PROCcircLee600,600,100)
40 PROCcircLee690,750,50)
50 END
60 DEFPROCcircLee xcentre%,ycentre%,radius%)

65

70 MOVE xcentre%,ycentre%
80 PLOT 157,xcentre%+radius%,ycentre%
90 ENDPROC

The values in brackets at line 20 are called parameters. The computer takes
the parameters and stores them in the variables xcentre%, ycentre%, and
radius% in line 60 when it obeys the procedure call. It uses these variables in
the rest of the procedure to draw a circle with its centre at 400,300 and a radius
of 200.

Lines 30 and 40 demonstrate how this same procedure can be used whenever a
circle is drawn. Only the parameters need to be changed.

A procedure like PROCcircle is very useful because:

it can be used many times in the same program with different parameters to
give different results;

it can be used even if you do not know or remember how the procedure
works;

it can be used in other programs.

You might use xcentre% and ycentre% to hold the coordinates of the screen
centre in a program. It seems as if these values will be lost if PROCcircle is used
in the same program, because this also has variables called xcentre% and
ycentre%:

10 MODE 130
15 xcentre%=640:ycentre%=512
20 PROCcircLe(400,300,200)
30 PROCcircLe(600,600,100)
40 PROCcircLe(690,750,50)
45 PRINT"xcentre% remalns ";xcentre%
46 PRINT"ycentre% remains ";ycentre%
50 END
60 DEFPROCcircLe(xcentre%,ycentre%,radius%)
70 MOVE xcentre%,ycentre%
80 PLOT 157,xcentre%+radius%,ycentre%
90 ENDPROC

RUN the program. The values of xcentre% and ycentre% are not affected by
PROCcircle. This is because any parameters passed to a procedure are
automatically local to that procedure. The xcentre%, ycentre% and radius% in
PROCcircle exist only within the procedure, and do not change the value of
variables with the same name elsewhere in the program.

66

All variables except parameters are global to a program. The whole program,
including procedures, 'knows' the value of the variables:

10 MODE 135
20 PROCname
30 PROCprint
40 END
50 DEFPROCname
60 INPUT"What is your name ",name$
70 ENDPROC
80 DEFPROCprint
90 PRINT"This procedure is caLLed PROCprint"
100 PRINT"It 'knows' your name is ";name$
110 ENDPROC

The string variable name$ is global. It is set up in PROCname, but PROCprint
also 'knows' name$ and uses it.

The distinction between local and global variables only becomes important if a
procedure contains global variables. For example, here is a procedure which
centres text on a given line:

100 DEFPROCcentre(text$)
110 Length%=LEN(text$)
120 x--position%=(40-Length%)/2
130 PRINT TABCx--position%) text$
140 ENDPROC

A useful procedure which might be called several times in a single program.
However, the procedure contains two global variables, length% and
x _ position%. If variables of the same name are used in the program, their
values are lost after PROCcentre is called:

10 MODE 135
20 Length%=5
30 x--position%=15
40 PRINT"Length% is ";Length%
50 PRINT"x--position% is ";x--position%
60 PROCcentreC"A few characters")
70 PRINT"Length% is now ";Length%
80 PRINT"x--position% is now ";x--position%
90 END
100 DEFPROCcentre(text$)
110 Length%=LENCtext$)
120 x--position%=C40-Length%)/2
130 PRINT TABCx--position%) text$
140 ENDPROC

67

You can make sure that variables within a procedure do not interfere with the
rest of the program by declaring the variables as local. Add this line to the
previous program and run it again:

105 LOCAL Length%,x--position%

This time length% and x _ position% are unchanged despite PROCcentre.
There are effectively two copies of the variables: the global values, available to
the whole program, and the local values, which exist only within PROCcentre.

PROCcentre is now completely isolated, and it can be used in any program
without giving unexpected side-effects.

Note that variables can also be used as parameters. This brief program
contains an improvement on PROCcircle so that you can select the colour used:

10 MODE 135
20 PROCchoose
30 MODE 130
40 PROCcircLe<xchoice%,ychoice%,radius--choice%,coLour_choice%)
50 END
60 DEFPROCchoose
70 INPUT"Centre of circLe ",xchoice%,ychoice%
80 INPUT"Radi us ", radi us-choi ce%
90 INPUT"CoLour number <1 to 15) ",coLour_choice%

100 ENDPROC
110 DEFPROCcircLe<xcentre%,ycentre%,radius%,coLour%)
120 GCOL 0,coLour%
130 MOVE xcentre%,ycentre%
140 PLOT 157,xcentre%+radius%,ycentre%
150 ENDPROC

Throughout the rest of this chapter on BBC BASIC, procedures are used
extensively. This is because it is simpler to write and modify programs that are
broken into smaller sections. Some of the procedures will be specific to a
particular program, but others, such as PROCcircle, are more general-purpose.
You may like to use these procedures in programs of your own.

Functions
A function is a routine which takes one or more parameters and uses them to
calculate a result. BBC BASIC contains some built-in functions. Try:

PRINT LEN("Acorn Computers") IRETURNI

LEN is a function which takes a string as a parameter and produces the length
of the string as the result. Now try:

PRINT SQR (9) IRETURNI

68

SQR is a function taking a number as a parameter and producing its square
root as the result.

BBC BASIC allows you to set up your own functions , as this example shows:

10 MODE 135
20 PROC input--time
30 END
40 DEFPROCinput--time
50 PRINT"'Input a time in minutes and seconds."
60 PRINT"'The function wi LL convert it into"
70 PRINT"seconds."
80 INPUT'''How many minutes and seconds ",minutes%,seconds%
90 total%= FNconvert(minutes%,seconds%)

100 PRINT'''That is ";totaL%;" seconds."
110 ENDPROC
120 DEFFNconvert(mins%,secs%)
130 =mins%*60+secs%

Line 90 calls the function. The computer scans the rest of the program until it
finds the DEFinition of the FuNction (DEFFN) at 120.

Line 130 begins with an equals sign. This tells the computer that the
calculation which follows will produce the required result, and that the function
ends on this line. The calculation is carried out, the function ends , and the
program returns to line 90 and stores the result in total%.

The function here is a trivial example, as it is simpler to just put:

90 totaL%=minutes%*60+seconds%

The program below uses a much more complex function, containing statements
which are explained in the next few sections:

10 MODE 135
20 PROCinput--word
30 END
40 DEFPROCinput--word
50 INPUT"Type in a word ",word$
60 PRINT'''An anagram of that word lS ";FNanagram(word$)
70 ENDPROC
80 DEFFNanagram(choice$)
90 Length%=LEN(choice$)
100 FOR count=1 TO length%
110 random....letter%=RND(Length%-1)
120 choice$=RIGHT$(choice$,Length%-random....letter%)+MID$(choice$,rand
om....Letter%,1)+LEFT$(choice$,random....Letter%-1)

fi9

130 NEXT
140 =choice$

Loops

FOR. .. NEXT

The real power of computers comes from their ability to repeat instructions.
This can transform trivial programs so that they produce very impressive
results.

The FOR..NEXT loop makes the computer repeat a set of instructions a fixed
number of times:

10 MODE 128
20 FOR count=1 TO 100
30 PRINT count
40 NEXT count

Line 20 is the start of the loop, with the variable count being set to 1 initially.
After printing the value of count at line 30, the computer finds the NEXT
statement which indicates the end of the loop.

At this point count is increased by 1. Provided that count has not gone beyond
the end value of 100 the computer now repeats all the instructions again.

Line 40 can be written as just:

40 NEXT

The use of the variable name is optional, but if you are using many loops in a
program, including the name makes the program easier to follow .

You can change the step size so that count does not increase by 1:

20 FOR count=7 TO 50 STEP 2

The step size can be decimal:

20 FOR count=3 TO 10 STEP 1.6

It can even be negative, although the start and end values for the loop must
also be adjusted so that the loop starts with the highest value:

20 FOR count=20 TO 1 STEP -1

Of course, the loop values can also be variables. You can experiment with loops
by adding these lines and running the program a few times:

15 INPUT "What is the start, end and step size ",start,end,step
20 FOR count=start TO end STEP step

70

Here is a brief program which shows the power of the loop:

10 MODE 2
20 PROCmoder~rt
30 END
40 DEFPROCmoder~rt
50 FOR count=1 TO 50
60 PROCcircLe(RND(1279),RND(1023),RND(200),RND(7))
70 NEXT count
80 ENDPROC
90 DEFPROCcircLe(xcentre%,ycentre%,radius%,coLour%)
100 GCOL 0,coLour%
110 MOVE xcentre%,ycentre%
120 PLOT 157,xcentre%+radius%,ycentre%
130 ENDPROC

RND produces a random whole number between 1 and the bracketed value.
Line 60 draws a random-sized circle in a random position and random colour by
calling PROCcircle with random parameters.

You may get an idea how some of the Welcome software works by running the
program again using these lines:

50 FOR count=7 TO 1 STEP -1
60 PROCcircLe(640,512,count*50,count)

One FOR. .. NEXT loop can be included within another. These are called nested
loops:

10 MODE 7
20 PROCtabLes
30 END
40 DEFPROCtabLes
50 FOR tabLe=1 TO 12
60 PRINT"TAB(8)"The ";tabLe;" times tabLe"""
70 FOR count=1 TO 10
80 PRINT count;"
90 NEXT count
100 PROCinput
110 NEXT tabLe
120 ENDPROC
130 DEFPROCinput

times "-tabLe-" is "-count*tabLe , , ,

140 PRINT'" '''Press any key when you're ready for"
150 PRINT'TAB(2)"the next muLtipLication tabLe"
160 key=GET
170 CLS
180 ENDPROC

71

The main loop running from line 50 to 110 counts through the multiplication
tables from 1 to 12. The other loop from 70 to 90 nests completely within the
main loop. It multiplies the value of table by all the numbers from 1 to 10.

The effect of LIST may be altered so that it automatically produces
indentations for every FOR and NEXT pair (and certain other structures).
Type:

LISTO 71RETURNI

LI STI RETURN I

Notice that the start and end of the loops are in line vertically. This makes it
easier to pick out the loops and spot errors.

Delete line 90, which contains a NEXT, and LIST the program again. The start
and finish of the loop at lines 50 and 110 no longer line up. This is a sure sign
that a loop somewhere in the program is missing a FOR or NEXT.

The option provided by LISTO remains in force until you reset it (using LISTO
0), execute a hard break or switch the computer off However, leave it in force
for the next section.

REPEAT ... UNTIL

Imagine a program based on the BBC quiz Mastermind. The program needs to
repeatedly ask questions until the time limit of one minute is reached. Can we
use a FOR. .. NEXT loop here?

FOR. .. NEXT loops always end as the result of a count reaching a certain value.
Here we have no idea beforehand exactly how many questions will be answered
in one minute. One person running the program may answer only three
questions, whereas another may answer a dozen.

In this case we must use a different sort of loop, the REPEAT ... UNTIL loop.
This is a loop that ends when a condition is satisfied, rather than as a result of a
count. For example, many programs include a procedure that prevents the
program from rushing on until a particular key is pressed:

10 MODE 7
20 PROCwait
30 END
40 DEFPROCwait
50 PRINT TAB(0,24)"Press C to continue"
60 REPEAT
70 key$=GET$
80 UNTI L key$="C"
90 ENDPROC

Lines 60 to 80 REPEATedly scan the keyboard UNTIL the C is pressed. Press

72

some other key at line 70. The computer finds that key$ does not satisfy the
condition at line 80, and so it executes the loop again from line 60.

The Mastermind program might look something like this:

10 MODE 7
20 PROCquiz
30 END
40 DEFPROCquiz
50 TIME=0
60 answers=0
70 REPEAT
80 first=RND(12)
90 second=RND(12)
100 PRINT'''What is ";first;" times ";second;
110 INPUT response
120 answer=answer+1
130 UNTIL TIME>=6000
140 PRINT'''You answered ";answer;" questions"
150 ENDPROC

Line 50 introduces TIME, which gives the value of the computer's internal
clock. TIME counts in hundredths of a second from the moment the computer is
switched on, or from when it is reset. Line 50 sets TIME back to zero, so that it
can be used to count the minute allowed for questions.

The variable answer is used to count the number of answers given, and is
initially set to zero by line 60. The loop runs from 70 to 130, and repeatedly asks
random multiplication questions until TIME is > = (greater than or equal to)
6000 hundredths of a second, one minute.

The program has one big flaw - unlike Magnus Magnusson , it doesn't check the
answers! You will find out how to extend the program to do that in the next
section, so you might like to save the program before you continue.

Making choices
You have already seen that the computer can obey a series of instructions, or
repeat instructions a number of times. It can also choose whether to obey an
instruction or not:

10 MODE 7
20 PROCinput-Bge
30 END
40 DEFPROCinput-age
50 INPUT "How oLd are you ",age
60 IF age<=18 THEN PRINT'''So you can't vote In eLections."
70 ENDPROC

73

RUN the program a few times , inputting different ages. In line 60, the
computer checks the statement after the IF, and if it is true, it executes the
instructions after the THEN. If the statement is false, the computer ignores the
rest of the IF .. . THEN and carries on to the next line.

Now add these lines to the program and run it several times, so that you are
sure you understand how IF ... THEN works:

63 IF age=32 THEN PRINT"'You are the same age as me!"
66 IF age<65 THEN PRINT'''You are beLow retiring age."

The quiz program can now be extended so that it checks your answers. The new
lines are 65, 115 and 145:

10 MODE 7
20 PROCquiz
30 END
40 DEFPROCquiz
50 TIME=0
60 answers=0
65 wrong=0
70 REPEAT
80 first=RND(12)
90 second=RND(12)
100 PRINT'''What is ";first;" times ";second;
110 INPUT response
115 IF response<>first*second THEN wrong=wrong+1
120 answer=answer+1
130 UNTIL TIME>=6000
140 PRINT'''You answered ";answer;" questions"
145 PRINT'''You had ";wrong;" wrong"
150 ENDPROC

Line 115 can be extended so that it gives the correct answer as well as counting
the wrong answers:

115 IF response<>first*second THEN wrong=wrong+1:PRINT "No, the ans
wer is ";first*second

Where there are only two possible outcomes, such as an answer being right or
wrong, an extended form of IF ... THEN can be used:

115 IF response<>first*second THEN wrong=wrong+1:PRINT "No, the ans
wer is ";first*second ELSE PRINT "WeLL done!"

In other words, IF the response is wrong,THEN the computer gives the right
answer, ELSE it congratulates you on getting it correct.

74

The line is beginning to get rather long. To make the program easier to read
and understand it is better to use:

115 IF response<>first*second THEN PROCwrong ELSE PROCright
and add extra procedures at the end:

160 DEFPROCwrong
170 wrong=wrong+1
180 PRINT "No, the answer 1S ";first*second
190 ENDPROC
200 DEFPROCright
210 PRINT "WeLL done!"
220 IF wrong<2 THEN PRINT "Keep it up"
230 ENDPROC

Conditions
A REPEAT ... UNTIL loop can be set so that it ends under a variety of
conditions:

10 MODE 135
20 PROCreaction
30 PROCtest
40 PROCcomment
50 END
60 DEFPROCreaction
70 PRINT TAB(0,8)"Press the correct key when it is"
80 PRINT"fLashed on the screen."
90 PRINT TAB(0,13)"You have 2 seconds to respond, and you"
100 PRINT"can continue untiL you miss twi ce or"
110 PRINT"20 seconds is up."
120 PRINT TAB(0,24)"Press any key when you're ready.";
130 key=GET
140 ENDPROC
150 DEFPROCtest
160 CLS
170 missed=0
180 right=0
190 TIME=0
200 REPEAT
210 Letter=RND(26)+64
220 PRINTTAB(19,11)CHR$(Letter)
229 REM VDU7 gives a bLeep
230 VDU7
240 response=INKEY(200)
250 IF response=-1 THEN missed=missed+1

75

260 IF response=letter THEN right=right+1
270 UNTIL missed=2 OR TIME>2000
280 ENDPROC
290 DEFPROCcomment
300 CLS
310 PRINT"You got ";right;" right"
320 PRINT"You missed ";missed
330 IF right>10 THEN PRINT'''A very good result."
340 IF right<4 THEN PRINT'''Rather poor."
350 ENDPROC

The loop runs from 200 to 270, and ends either when two keys are missed or 20
seconds is up. The OR can also be used in IF ... THEN statements:

325 IF right>10 OR missed=0 THEN PRINT'''A very good result."

You may want an IF ... THEN statement to be executed only if several
conditions are true at the same time:

345 IF right<3 AND missed=2 THEN PRINT'''Quite pathetic."

AND can also be used to end a REPEAT ... UNTIL loop:

270 UNTIL missed=2 AND right=5

Now the loop only ends after you have both missed two letters and have five
correct - not a very sensible test!

There is (almost) no limit to the number of conditions, for example you might
have:

270 UNTIL missed=2 OR TIME>2000 OR right>5

Multiple choices

IF ... THEN .. . ELSE is useful if there are only two alternative choices of action ,
but often in a program there may be many more. For example, programs often
contain a menu which allows the user to choose one of a number of actions.
Here is the start of a drawing program which contains a menu:

10 MODE 135
20 PROCmenu
30 END
40 DEFPROCmenu
50 REPEAT
60 CLS
70 PRINT TABU ,5)"Do you want to:"
80 PRINT TAB(8,9)"1 Load a picture"
90 PRINT TAB(8,12)"2 Save a picture"
100 PRINT TAB(8,15)"3 Draw a picture"

76

110 PRINT TAB(8,18)"4 End the program"
120 PRINT TAB<7,22)"Your choice, 1 to 4 ";
130 REPEAT
140 response=GET
150 UNTIL response>48 AND response<53
160 choice=response-48
170 ON dlo·j ce PROC Load, PROCsave, PROCdraw, PROCmake---Sure
180 UNTIL choice=4
190 ENDPROC

(This program is incomplete and gives an error message if you run it).

The loop from lines 130 to 150 only ends when a key with an ASCII code
between 48 and 53 is pressed. These are the ASCII codes for the numbers 1 to 4
on the keyboard, so this loop screens out accidental key depressions like Q or
w.
Subtracting 48 from the ASCII code in line 160 gives a number from 1 to 4
again and line 170 uses this number to choose which of four procedures to
execute. If choice=l, the computer carries out PROCload, with choice=2 , it
executes PROCsave, and so on. After carrying out the procedure the computer
continues with line 180.

The program avoids the problems that might arise with a wrong key depression
by only continuing when one of the keys 1 to 4 is pressed. However, the loop
from lines 130 to 150 can be omitted and the problem of incorrect keys handled
by an extension of the ON ... PROC statement:

120 PRINT TAB<7,22)"Your choice, 1 to 4 ";
140 response=GET
160 choice=response-48
170 ON choice PROCLoad, PROCsave, PROCdraw, PROCmake---Sure ELSE
PROCwron9---key

The computer executes PROCwrong_key if choice does not fall in the range 1
to 4. Only a single statement can follow the ELSE, although it need not be a
PROC, for example:

170 ON choice PROCLoad, PROCsave, PROCdraw, PROCmake---Sure ELSE
PRINT"Wrong key!"

ON ... PROC is very useful, but note that it only works with numbers which
must range from one upwards in steps of one. Normally, therefore you will need
to carry out some kind of calculation in order to produce a suitable range of
values.

77

Error handling
You can reduce the time you spend correcting errors in your programs by using
procedures and sensible variable names, but it is inevitable that you will make
some mistakes. The computer is able to identify some types of error itself, and
gives an error message to let you know what is wrong.

You should always include an error-handling routine in your program. This
tells you (or anyone else using the program) as much about the error as
possible , and makes correcting it easier:

10 ON ERROR GOT050
20 MODE 130
30 PROCmain-program
40 END
50 MODE 7
60 PRINT"Error number ";ERR;" at Line ";ERL
70 END

This program contains a major error - there is no procedure called
PROCmain _program! Running the program gives this result:

Error number 29 at Line 30

The ON ERROR statement at line 10 tells the computer that ifit finds an error
while it is running the program it should go to line 50. Every sort of error the
computer can detect has an error number, and the computer uses the variable
ERR to store this number. It uses ERL to store the line number at which the
error occurred.

The Reference Manual gives a full list of the error numbers and describes the
errors themselves in detail. However, you can get more information about the
error from the computer itself by including a REPORT statement in the
error-handling routine:

55 REPORT
60 PRINT" at Line ";ERL

Running the program gives:

No such FN/PROC at Line 30

This shows that the computer could not find a procedure called
PROCmain _ program at line 30.

You have probably already had some experience of the computer giving error
messages. As it does this automatically, you may wonder why you should
bother including an error-handling routine at all. The main reason is that the
routine can restore the computer to normal. Error messages can otherwise
prove unreadable, as you will see if you RUN this program:

78

10 MODE 2
20 VDU 28,19,31,19,0
30 COLOUR 135
40 a terribLe mistake
50 END

Add these lines to see the advantage of an error-trapping routine:

5 ON ERROR GOTO 60
60 MODE 7
70 REPORT
80 PRINT "at Line ";ERL
90 END

More about strings
Strings are merely groups of characters and this section deals with their
manipulation in BBC BASIC.

You can join together (concatenate) several strings simply by telling the
computer to 'add' one string to the end of another:

10 MODE 135
20 first$="The start"
30 second$="and the end."
40 aLL$=first$+second$
50 PRINT a L L$

Running the program gives:

The startand the end.

Other than that the composite string may not exceed 255 characters, there is
effectively no limit on the number of strings which may be joined together at
one time. You could, for example, include an additional space in the line shown
above using:

40 aLL$=first$+" "+second$

Two strings can also be compared using < = and > (or any combination of the
three). The two strings are compared character by character until a difference
is found. The string containing the character earliest in the alphabet is 'less
than' the other string. For example:

PUPPY is less than SHARK because P comes before S;

PUPPY is less than RAT because P comes before R;

PUppy is greater than POppy because both words begin with the letter P
and U comes after 0;

79

- PUPPY is greater than MONKEY because P comes after M.

If you are still not sure about this, run the following program which lets you
compare pairs of strings:

10 MODE 135
20 REPEAT
30 INPUT LINE "What is the first string", firsU
40 INPUT LINE "What is the second string", second$
50 IF first$<second$ THEN PRINT first$;" is earLier aLphabeticaLLy
than ";second$
60 IF first$=second$ THEN PRINT "The two strings are identicaL."
70 IF first$>second$ THEN PRINT first$;" is Later aLphabeticaLLy
than ";second$
80 UNTIL fi rst$="STOP"

Can you see how to stop execution of the program?

The computer can sort a long list of strings into alphabetic order by using string
comparisons like the above. Strictly speaking, the computer compares the
ASCII codes of t h e characters concerned. A lower case letter like a is considered
to be greater than the upper case A because the ASCII code for a is 97 and the
ASCII code for A is only 65.

LEN enables you to find out how many characters there are in a string:

10 MODE 135
20 INPUT "What is your string ";choice$
30 Length=LEN(choice$)
40 PRINT choice$;" contains ";Length;" characters."

The earlier anagram program (see page 69) used LEN to find the length of the
word supplied as input. It then rearranged the characters by combining parts of
the string in a different order. There are several functions which enable you to
copy part of a string:

10 MODE 135
20 exampLe$="YeLLow submarine"
30 PRINT "The word is ";exampLe$
40 part1$=LEFT$(exampLe$,4)
50 PRINT "The Leftmost 4 Letters are ";part1$
60 part2$=RIGHT$(exampLe$,6)
70 PRINT "The rightmost 6 Letters are ";part2$
80 part3$=MID$(exampLe$,5,6)
90 PRINT "The middLe 6 Letters are ";part3$
100 part4$=MID$(exampLe$,4)
110 PRINT "The Letters from the 4th character are: ";part4$

80

LEFT$ and RIGHT$ work in a similar way, by taking the chosen number of
characters from the left or right of the string respectively. MID$ is slightly
different - in line 80 it is used to extract letters beginning at the 5th letter and
going on for 6 letters . In line 100 the second number is omitted, which causes
MID$ to extract all the characters from the 4th to the end of the string.
Needless to say the numbers in each of the examples above may be replaced by
numeric variables.

A string can be created which consists of a series of copies of another string
using STRING$:

10 MODE 135
20 INPUT "What is your string ",text$
30 copy$=STRING$C10,text$)
40 PRINT "A string containing 10 coples Looks Like this:"
50 PRINT copy$

INSTR is used to check for the first occurrence of one string within another, for
example:

10 MODE 135
20 INPUT LINE "PLease type in any sentence",sentence$
30 check=INSTRCsentence$,"e")
40 PRINT "Your sentence contains or;
50 IF check>0 THEN PRINT "an 'e' at position ";check ELSE PRINT Old
oes not contain an 'e'"

The variable check at line 30 contains the position within sentence$ at which
the first letter e occurs. If sentence$ does not contain an e, check is O. You can
also search for groups of letters using INSTR. For example replacing line 30
with:

30 check=INSTRCsentence$,"the")

makes the program check for the string the within sentence$.

You cannot carry out arithmetic on a string variable , even if that string
variable contains only numeric characters. This can be inconvenient, so there
are two functions which enable you to change a number to a string and vice
versa:

10 MODE 135
20 INPUT "What is today's date Ceg 27) "; number
30 number$=STR$Cnumber)
40 INPUT "What month is it ";month$
50 date$=month$+" "+number$
60 PRINT "Today's date is ";date$

STR$ in line 30 converts the numeric variable number into a string variable

81

number$. Lines 50 and 60 are included to demonstrate that the string version
can be concatenated with other strings.

V AL gives the numeric value of a string:

10 MODE 135
20 INPUT "Type in any mixture of numbers and Letters ";mixture$
30 number=VAL(mixture$)
40 IF number>0 THEN PRINT "The string begins with the numbers ";
number

If a string begins with numeric characters, a + or - sign, V AL converts those
characters to their numeric equivalent. Note that V AL ignores the remainder
of the string following the first non-numeric character it discovers,for example:

PRINT VAL(" 123g456") I RETURN I

produces 123.

READ, DATA and RESTORE

Many programs need some basic data before they can run , and it is often
convenient to store that data as part of the program. For example, here is a
simple quiz program that includes the questions and answers in DATA
statements:

10 MODE 135
20 PROCstart
30 PROCquiz
40 END
50 DEFPROCstart
60 correct=0
70 READ hOWL-many
80 PRINT TAB(14)"A quiz game"
90 PRINTSTRING$(40,"=")
100 ENDPROC
110 DEFPROCquiz
120 FOR question=1 TO hOWL-many
130 READ question$,answer$
140 PRINT'question$
150 INPUT response$
160 IF response$=answer$ THEN PROCright ELSE PROCwrong
170 NEXT question
180 PRINT'''You had ";correct;" right out of ";hoWL-many
190 ENDPROC
200 DEFPROCright
210 correct=correct+1
220 IF RND(2»1 THEN PRINT'''That's right!" ELSE PRINT'''WeLL done!"

82

23121 ENDPROC
24121 DEFPROCwrong
25121 PRINT'''No, the answer is:"
26121 PRINTanswer$
27121 ENDPROC
28121 DATA3
29121 DATAWhich century is this,2l21th
3121121 DATAWhich British king had SlX wives,Henry VIII
31121 DATAWhat is the seed of an oak ca L Led,Acorn

The READ statement in line 70 makes the computer search through the
program until it finds the first line beginning with the word DATA, which is
280. The computer reads the first value after the word DATA and stores it in
the variable how _ many. DATA items can either be numbers or strings, and
are separated by commas.

The loop from lines 120 to 170 is carried out 3 times (the value of how _ many).
Line 130 successively reads a question and answer from the DATA statements.
Each time through the loop the computer carries on reading data at the point at
which it left off, so each time it reads a different question and answer.

Any number of data items can be included in a DATA statement, up to the
maximum line length of 255 characters. Thus all the data in the program could
be confined to a single line:

28121 DATA3,Which century is this,2I21th,Which British king had six W1V

es,Henry VIII,What is the seed of an oak caLLed,Acorn

The main reason for breaking the data up is that it makes changes easier. For
similar reasons DATA lines are usually collected together although they can be
placed anywhere within the program. You can add an extra question simply by
inputting these lines:

28121 DATA4
31121 DATAWho won the 1984 WorLd Cup,ItaLy

Running the program reveals one of the problems of using strings. The
computer only accepts as correct a response that exactly matches its stored
answer - for example, Henry the Eighth is treated as a wrong answer to
question 2!

You can use the RESTORE statement to make a program read DATA
beginning at a particular line. Add these lines to the quiz program to offer
alternative questions:

91 PRINT "Do you want (1) generaL knowLedge questions"
92 PRINT TAB(13)"(2) questions on animaLs"
93 INPUT "1 or 2",choice

83

94 IF choice=1 THEN RESTORE 280 ELSE RESTORE 500
500 DATA3
510 DATAWhat is the young of a woLf caLLed,woLverine
520 DATAWhat is the Largest mammaL,whaLe
530 DATAWho ki LLed Cock Robin,sparrow

Line 94 uses RESTORE to make the program read data beginning at line 280
or at 500, depending upon the set of questions are chosen.

Arrays
The computer is very useful for finding a particular data item in a long list or
for sorting sets of data into a particular order. For example, you might want to
sort a list of names into alphabetical order. The computer is quite able to do
this, but it needs to compare every name with every other name to decide upon
their order. All the names must be accessible at the same time, and it is easier
to compare them if they are all stored in a list or array.

This program reads 10 names into an array and then displays any selected
name:

10 MODE 135
20 PROCset-uP-Brray
30 PROCfind
40 END
50 DEFPROCset-uP-Brray
60 DIM name$(10)
70 FOR count=1 TO 10
80 READ name$(count)
90 NEXT count
100 ENDPROC
110 DATA Smith,BLoggs,Hutchings,PostLethwaite,Broome
120 DATA Turner,Dick,James,NeaLe,SeweLL
130 DEFPROCfind
140 INPUT "Which name do you want (1-10)",number
150 PRINT'''Number ";number;" in the List is ";name$(number)
160 ENDPROC

The DIM statement in line 60 tells the computer how many items there are in
the array _. in this case, 10. The loop from lines 70 to 90 reads the names from
data statements and automatically stores them in the array name$, so that
name$(1) is Smith, name$(2) is Bloggs, and so on. PROCfind at 130 is included
so that you can confirm for yourself that the computer has stored the names in
the order they are given in the DATA statements.

The program can search through the array very rapidly to find a name or set of

84

names which meet certain requirements. For example, to find all names
beginning with a particular letter, change the last few lines to:

140 INPUT "Which Letter shouLd the name begin with ",Letter$
150 FOR count=1 TO 10
160 name$=name$(count)
170 IF LEFT$(name$,1)=Letter$ THEN PRINT name$
180 NEXT count
190 ENDPROC

This program contains only a few names, but the computer can deal just as
easily with a list of several hundred names - the limiting factor is the
computer's memory capacity.

It is more common to deal not with a single array but with several
simultaneously. We usually make lists of data items that are in some way
associated - names and addresses, books and their authors, and so on. For
example, if names and ages are being stored we can set up two arrays. The
association between the arrays makes it easy for the computer to carry out
searches. If Broome is the fifth name in the names array, his or her age is fifth
in the age array:

name$(5)="Broome" age(5)=27

Here the age is stored in a numeric array age() rather than a string array,
because we may want to carry out a calculation involving the age.

This program stores the names and ages of 10 people, and searches the array to
find the age of any person once you have input their surname:

10 MODE 135
20 PROCset:..JJp........a r ray
30 PROCfincLage
40 END
50 DEFPROCset:..JJp........array
60 DIM name$(10), age(10)
70 FOR count=1 TO 10
80 READ name$(count), age(count)
90 NEXT count
100 ENDPROC
110 DATA Smith,42,BLoggs,35,Hutchings,57
120 DATA PostLethwaite,35,Broome,49,Turner,23
130 DATA Dick,39,James,24,NeaLe,63,SeweLL,75
140 DEFPROCfincLage
150 INPUT "Whose age do you want ",search$
160 count=1
170 REPEAT

85

180 name$=name$(count)
190 IF name$=search$ THEN PRINT name$;" lS ";age(count)
200 count=count+1
210 UNTIL count=11 OR name$=search$
220 IF name$<>search$ THEN PRINT search$;" is not 1n the List"
230 ENDPROC

Only one DIM statement is needed to set up the size of both arrays, line 60. The
loop from 170 to 210 examines each name in the arra y to see if it is the one
required.

It is also possible to use integer arrays. In the previous program all the ages
were integers, and could have been stored in an array age%() .

Files
The last section showed how you can store data in arrays. One weakness of this
storage method is that it wastes computer memory. Every data item is stored
twice: once as part of the DATA statements within the program, and again
elsewhere in memory when the computer copies each data item into the array.

A more sensible method is to store the data completely separately from the
program, as a data file. The file can be saved onto cassette or disc (in a similar
manner to a program) and can be loaded back when required.

This program creates a file of names and telephone numbers:

10 MODE 135
20 PROCtake-names
30 PROCmak~fiLe
40 END
50 DEFPROCtake-names
60 DIM name$(100), teLe$(100)
70 PRINT"'PLease type in the names and"
80 PRINT"teLephone numbers of your friends."
90 PRINT"You can end by typing XXX when you"
100 PRINT"are asked for a name.""
110 count=0
120 REPEAT
130 count=count+1
140 INPUT "Name",name$(count)
150 IF name$(count)<>"XXX" THEN INPUT "TeLephone number",teLe$(count)

160 UNTIL name$(count)="XXX" OR count=100
170 ENDPROC
180 DEFPROCmak~fiLe
190 CLS
200 PRINT'''What name do you want to give to"

86

210 INPUT"your data fiLe",fi Le$
220 thi~ne=OPENOUT(fiLe$)
230 FOR number=1 TO count-1
240 PRINT#thi~ne,name$(number),teLe$(number)
250 NEXT number
260 CLOSE#thi~ne
270 ENDPROC

The program will display the message:

RECORD then RETURN

when it wants to save the data file - you will also have to stop the tape
recorder if your equipment does not provide motor control.

PROCtake _ names sets up two string arrays which can hold up to 100 names
and telephone numbers. The loop from 120 to 160 takes input from the
keyboard and stores the names and numbers in the two arrays.

PROCmake _ file creates the file, which is given a name at line 210. Line 220
opens the file using OPENOUT so that data can be output to it.

BBC BASIC allows you to have up to five files open at the same time. Each file
is given a number by the computer so that it can distinguish between files. This
number is called the channel number. All references to the file are made via
the channel number, so it is vital that it is saved. Line 220 stores the channel
number for the file in the variable this _ one.

The loop from lines 230 to 250 writes the data out to the file. Line 240 tells the
computer to print the data out via channel this _ one.

The computer needs to be told that there is no more output, so line 260 closes
the channel once all the data has been printed to the file.

Note that running the program only saves the file containing the names and
telephone numbers. The program itself must be saved in the same way you
would save any other program.

A file is of little use unless you can read the information stored in it and the
followings program reads the names and phone numbers in the file back into
memory, and finds the phone number for any friend whose name you have
stored on the file:

10 MODE 135
20 PROCreaLfi Le
30 PROCfin~umber
40 END
50 DEFPROCreaLfi Le
60 DIM friend$(100), numb$(100)

87

70 PRINT'''What name did you glVe to"
80 INPUT"your data fiLe",fiLe$
90 that-Dne=OPENIN(fiLe$)
'1 00 count=0
', 10 REPEAT
120 count=count+1
130 INPUT#that-Dne,friend$(count),numb$(count)
140 UNTIL EOF#that-Dne
150 CLOSE #that-Dne
160 ENDPROC
170 DEFPROCfindL-number
180 CLS
190 INPUT "Whose number do you want",name$
200 search=0
210 REPEAT
220 search=search+1
230 IF name$=friend$(search) THEN PRINTname$;" has the number
";numb$(search)
240 UNTIL search=count OR name$=friend$(search)
250 IF name$<>friend$(search) THEN PRINT"I can't find this name"
260 ENDPROC

PROCread _ file reads the contents of the file back into memory and stores the
names and phone numbers in two arrays friend$ () and numb$() .

Line 90 opens the file using OPENIN so that data can be input from it. Once
again we save the channel number, this time storing it in the variable
that_ one.

The loop from lines 110 to 140 reads in items from the file and stores the data in
the arrays. Line 130 inputs data via the channel that _ one.

The computer does not know how many data items there are in the file , so it
continues to read data until it reaches the End Of File (EOF) at line 140. As
there is no more data, line 150 closes the file.

All the data has now been copied from the file into the arrays friend$() and
numb$(), and PROCfind _ number searches those arrays for the phone
number if you input as friend's name.

The previous two programs are very simple and only illustrate the principles of
using files. Much more sophisticated software is available which allows you to
create and modify files of data of any nature, rather than specifically names
and phone numbers. If you have a disc-based machine you can expand your
system to include ViewStore, a very powerful file-handling program, details of
which are available from Acorn.

88

More about graphics
In any graphics mode a fixed number of pure colours can be shown on the
screen simultaneously. Four other patterns made up from a combination of the
pure colours can also be displayed. For example, in mode 129 four pure colours
are available, and four patterns. This program displays all eight colours at the
same time by drawing seven rectangles on a background of black:

10 MODE 129
20 PROCpure
30 PROCmixed
40 END
50 DEFPROCpure
60 FOR coLour=1 TO 3
70 GCOL0,coLour
80 corner=80*coLour
90 PROCrectangLe(corner,corner,corner+100,corner+100)
100 NEXT coLour
110 ENDPROC
120 DEFPROCmixed
130 FOR coLour=16 TO 64 STEP 16
140 GCOL coLour,0
150 corner=80*«coLour/16)+3)
160 PROCrectangLe(corner,corner,corner+100,corner+100)
170 NEXT coLour
180 ENDPROC
190 DEFPROCrectangLe(x,y,x1,y1)
200 MOVE x,y
210 PLOT 101,x1,y1
220 ENDPROC

PROCpure draws rectangles in the pure colours following the GCOL °
command at line 70.

PROCmixed draws rectangles using the patterns. Each time through the loop
the pattern is dictated by the GCOL command at line 140. The first time this is
GCOL 16,0; the next GCOL 32,0; and so on.

The patterns dictated by GCOL 16,0 and the other high-numbered GCOL
commands are not fixed, and can be changed by a VDU command. Add the
following lines to the program and run it again:

121 REM gives yeLLow/bLack shading for GCOL 16,0
122 VDU23,2,160,80,160,80,160,80,160,80

The command VDU 23,2 changes the pattern produced by GCOL 16,0. The
eight numbers following describe the new pattern - in this case alternate black

89

and yellow areas. Similarly, VDU 23,3 can be used to give a new pattern
following GCOL 32,0 and VDU 23,4 changes the pattern produced by GCOL
48,0. Add these lines to get a completely new set of patterns:

123 REM gives Large bLock red/yeLLow shading for GCOL 32,0
124 VDU23,3,60,195,60,195,60,195,60,195
125 REM gives bLack/red shading for GCOL 48,0
126 VDU23,4,5,10,5,10,5,10,5,10
127 REM gives bLack/white shading for GCOL 64,0
128 VDU23,5,85,170,85,170,85,170,85,170

Working out which eight numbers produce which pattern is a little complex,
and the procedure varies from mode to mode - you will find it easier to use the
pattern generator utility (PFILL) from the Welcome software and which is
described at the end of this chapter. Further information about the way the
VDU23 command works is given in the Reference Manual.

PFILL lets you define your own pattern and displays the numbers needed to
recreate it. The numbers are shown in hexadecimal form (counting in 16s). Do
not worry if you are not familiar with hexadecimal. You need only put these
numbers in a suitable VDU statement to use the pattern III your own
programs. For example:

122 VDU23,2,&A0,&50,&A0,&50,&A0,&50,&A0,&50

is the hexadecimal equivaalent of the previous line 122 and has the same effect.
(The & symbol is used to denote that the number following is in hexadecimal
notation.)

Defining your own characters

VDU 23 can also be used to define new characters for games or for specialist
programs in science or mathematics which require unusual notation. You may
recall that the symbol for pi was used as an example in the introduction to this
guide.

90

All the normal characters are based on an 8 by 8 grid, so the uppercase A looks
like this:

Any of the characters can be redefined, but changing the upper case A to some
other shape does not help the readability of programs!

Here is a 'dog' character which has been drawn on the 8 by 8 grid:

128 64 32 16 8 4 2

You can redefine character 255 as the dog by typing:

VDU 23,255,17,225,34,60,60,66,129,129

To see the character, try typing:

MODE 1291RETURNI
PRINT CHR$(255)lrR-ET~u~RN'1

Each number after VDU 23,255 describes one of the eight rows of points which
together make up the character, from top to bottom. To get this number you
must first note the points within the row which will be 'lit' when the figure is

91

displayed. For example , in the top row only the fourth and last points will be lit.
The number to describe this row is 16 + 1 = 17, obtained by adding the figures
above these two points.

Similarly, the second row is described by the number

128 + 64+32 + 1= 225, the third row by 32+2=34, and so on.

Draw up an 8 by 8 grid and try defining a character of your own.

The Welcome software also contains a character design utility called
CHARDES which provides an automated method of changing the characters
which the computer can display. This utility is described at the end of this
chapter.

Changing the range of colours

Modes like 128 only allow two colours to be displayed on the screen at anyone
time - for example, the normal colours for mode 128 are black and white.
Although there is no way you can use more than two colours simultaneously in
mode 128, you can change the range of colours available i.e. instead of black
and white you could choose red and yellow.

However, the numbers used in GCOL and COLOUR commands produce
different effects in different modes and the colour displayed depends upon two
sets of information.

92

Colour number assignments
in Mode 0 (128)

o

1

Actual colours

o Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6Cyan
7 White
8 Black/White
9 Red/Cyan

10 Green/Magenta
11 Yellow/Blue
12 Blue/Yellow
13 Magenta/Green
14 Cyan/Red
15 White/Black

The list on the right shows what are called the actual colour numbers ofthe 16
pure colours. This list never changes and is the same for every mode. The way
the colour numbers for the mode are associated with this actual colour list can
be varied by using the VDU 19 command. For example, type:

MODE 1281RETURNI
VDU 19 ,Iil, 1 ,1il,1il,IilIRETURNI

This instantly changes the normal black background colour to red.

The first number after VDU 19 is 0, which normally produces black in mode
128. The second number refers to the actual colour number 1, which always
stands for red. The VDU 19 command effectively changes the association
between the colour numbers and the actual colours:

Colour number assignments
in Mode 0 (128) after using
VDU19,1il,1,1il,1il,1il

o

1

Similarly, white can be changed to yellow by:

VDU 19,1 ,3,1il,1il,IilIRETURNI

Actual colours

o Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6Cyan
7 White
8 Black/White
9 RedlCyan

10 Green/Magenta
11 Yellow/Blue
12 BluelY ellow
13 Magenta/Green
14 CyanlRed
15 White/Black

(The last three zeroes are for future expansions and they must be included even
though they and have no effect.)

93

Colour number assignments
in Mode 0 (128) after using
VDU19 ,0,1,0,0,0 and
VDU19,1,3,0,0,0

o

1

Actual colours

o Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6Cyan
7 White
8 Black/White
9 RedlCyan

10 Green/Magenta
11 Yellow/Blue
12 Blue/Yellow
13 Magenta/Green
14 CyanlRed
15 White/Black

The same principle applies in all other modes except 7 and 135 - a full list of the
normal colour number assignments is given in Appendix A.

The teletext mode
Modes 7 and 135 are unique III the way they display text and graphics.
Commands such as COLOUR, GCOL, MOVE and DRAW do not work in these
modes. Instead, colourful displays are produced using what are known as
teletext control codes.

You may have seen teletext pages broadcast by CEEFAX or Oracle - modes 7
and 135 are teletext compatible modes.

The computer lets you produce your own teletext displays using mode 7 or 135.
These modes use very little memory, and offer a wide range of colours for
simultaneous display on-screen. The graphics are limited but effective.
Throughout the rest of this section only mode 135 will be discussed, but all
comments apply equally to mode 7.

This program demonstrates the text colours available in mode 135:

10 MODE 135
20 PRINT "This";CHR$(129);"shows how a controL code"
30 PRINT "onLy effects the'';CHR$(130);''characters''
40 PRINT "after it on the"·CHR$(13n·"same"·CHR$(129)·"Line" , , , ,.

The PRINT statement at line 20 prints some text containing a series of

94

invisible control codes. Each code takes up a character position, so the words
are printed with spaces between. The codes affect the way the remaining
characters on that particular line are displayed. For example, printing
CHR$(129) before "shows" makes the computer display the text in red,
CHR$(130) causes the text after it to be printed in green, and so on.

Printing any of the ASCII codes 129 to 135 affects the colour of any characters
printed after the code on the same line. Try:

PRINT CHR$(130) "Test"IRETURNI

which prints in green. A full list of the teletext control codes IS gIVen In

Appendix B.

The colour of text can be changed directly from the keyboard. Hold down 1 SHIFT 1

and at the same time press the red function key 1 (, I. This prints the control
code 129. Any characters you type on the same line will now be displayed in
red. Pressing 1 SHIFT 1 and any of the function keys 1 (, 1 to 1 (7 I gives a different
colour for any text printed afterwards on the same line.

You can also make text flash:

PRINT CHR$(136); " Flash"; CHR$(137>; "no flash"; CHR$(136); "flash" IRETURNI

Flashing coloured text can be produced by using two control codes:

PRINT "F Lashi ng"; CHR$(129); CHR$(136);" red" I RETURN I

The codes each occupy a character position, so the words are printed separated
by two spaces.

Again, the same effects are possible using the function keys. SHIFT and f8
print the control code for flashing, SHIFT and f9 print the non-flashing code.

Double height characters can be printed using CHR$(141):

10 MODE 135
20 PRINT CHR$(141);''DoubLe height"
30 PRINT CHR$(141);"DoubLe height"

The same text must be printed on two successive lines beginning with
CHR$(141), otherwise only the top half of the letters is displayed.

Changing the background colour uses two codes:

PRINT CHR$(131);CHR$(157>IRETURNI

The first code is for yellow text. CHR$(157) tells the computer to use the
previous control code as the background colour. The net effect of the two codes
is to give yellow text on a yellow background, as you can see if you type:

PRINT CHR$(131); CHR$(157>; "He L Lo"l RETURN I

95

This is obviously not very useful, as the text is unreadable. To print text visibly
on a coloured background requires three control codes, two codes to change the
background colour and a third to change the colour of the text:

PRINT CHR$(131);CHR$(157>;CHR$(132);"BLue on yeLLow"IRETURNI

The first two codes set the yellow background and CHR$(132) is the code for
blue text.

All of these codes can be combined and incorporated into strings. If you intend
to use a particular set of codes many times within a program it is useful to set
up a single string containing those codes:

10 MODE 135
20 ryfLash$=CHR$(131)+CHR$(157)+CHR$(129)+CHR$(136)

30 PRINT' 'ryflash$;"A demonstration"
40 PRINT "of normaL printing";ryfLash$;"and in coLour"

Teletext graphics

All graphics in mode 135 are produced as the result of printing characters. If
any line contains a graphics control code, any characters other than uppercase
letters that appear after it on the same line are printed as graphics shapes.
Each letter corresponds to a particular shape which is based on a two by three
grid for example:

a b c

A full table showing the graphics shape associated with each character,
together with the graphics control codes, is given in Appendix B.

The printing of any of the ASCII codes 145 to 151 causes characters on the
same line to be printed in their graphics form. Upper case letters are
unaffected:

PRINT CHR$(145) ; "Aa"; CHR$(146) ; "Bb"; CHR$(147>; "Cc" I RETURNI

It is easier to appreciate the effectiveness of teletext graphics when a series of
graphics characters are displayed together:

PRINT CHR$(148); STRING$(30, "9") I RETURN I

96

Graphics characters can be displayed in double height, on different
backgrounds, or flashing .

You can produce the graphics control codes directly from the keyboard by
pressing I CTRL I and any of the function keys I (, I to I f7 1 simultaneously.
Any non-upper case characters you subsequently type on the same line will be
displayed as graphics shapes.

Sound
Your computer contains a sound generator with four channels.

Two BASIC commands are available that give a wide degree of control over
sound. The SOUND command is used to play single notes. For example:

SOUND 1,-15,53,20IRETuRNI

plays a note on channel 1 at maximum loudness for 1 second. The command can
be summarised as:

SOUND channel,loudness,pitch,duration

The first of the four parameters after SOUND denotes the channel number.
This can be 0 to 3, with channel 0 producing noises for special effects, and
channels 1 to 3 producing musical notes. For example:

SOUND 0,-15,53,20IRETuRNI

changes only the channel number from the previous example but gives a very
different effect.

The second parameter controls the loudness or amplitude of the note, and can
have any value from -15 to 16. The loudest is -15, -14 is quieter and other
negative numbers give softer sounds up to 0 , which is silence. Any positive
number from 1 to 16 indicates the sound is under the control of an ENVELOPE
command (discussed shortly).

The third number gives the pitch of the note , and can have any value from 0 to
255. Low values produce deep notes; high values, high notes . The pitch value
has a different effect if channel number 0, the noise channel, is used. In this
case the range for the third parameter is only 0 to 7, producing various pitches
of noise .

The last parameter shows the duration of the sound in twentieths of a second,
and can have any value from 0 to 255. In the example, this value is 20, so the
note sounds for 1 second (20 twentieths of a second) . A value of 255 produces a
continuous sound that stops only if you press IESCAPE I.

97

To play a simple tune you need only sound several notes in succession:

10S0UND 1,-15,97,10
20S0UND 1,-15,105,10
30S0UND 1,-15,89,10
40S0UND 1,-15,41,10
50S0UND 1,-15,69,20

Notes can be sounded simultaneously on another channel if you add:

15S0UND 2,-15,97,10
25S0UND 2,-15,105,10
35S0UND 2,-15,89,10
45S0UND 2,-15,41,10
55S0UND 2,-15,69,20

Sounds with a loudness parameter of 1 to 16 are controlled by the envelope with
the corresponding number. The envelope can affect both the pitch and
amplitude of a note. For example:

SOWND 1,-15,255,255IRETURNI

plays a continuous loud note . Change the second parameter to 1 and the note
comes under the control of envelope 1. The ENVELOPE command requires 14
parameters:

ENVELOPE 1,1,-26,-36,-45,255,255,255,127,0,0,-127,126,0IRETURN I

The number immediately after ENVELOPE is the envelope number, which can
vary from 1 to 16. The remaining parameters control and vary the pitch and
amplitude of the note. Try the same note as before, but under the control of
envelope 1:

SOUND 1,1,255,255IRETURNI

The SOUND and ENVELOPE commands are extremely versatile and together
enable the computer to function as a music-maker superior to much more costly
synthesisers - both commands are discussed in detail in the Reference Manual.
In addition, the Welcome software includes an envelope editor (called
ENVELOPE) which allows you to experiment with the parameters in the
envelope command.

Changing the time

The introduction to this User Guide describes how you can use the control
panel utility to re con figure your machine - one of the facilities offered is to
reset the date and time. You can do the same thing more directly by using the
variable TIME$ which enables you to read or alter the time.

98

For example:

PRINT TIME$IRETuRNI

displays the day, date and time. Typing:

TIME$="Tue,7 Jan 1986_09:00: :00"IRETURNI

sets the time to 9.00am on Tuesday January 7th 1986. The comma, spaces, full
stop and colon characters are important as they separate the day, date and
time. Either the date or the time can be omitted, so the following are also valid:

TIME$="12:27:35"
TIME$="Fri, 6 Jun 1986"

128KBASIC

Your computer is equipped with a ROM-based version of BBC BASIC which, in
conjunction with the shadow memory facilities can access up to 64K of the
available 128K of random-access memory (RAM). Access to the remaining 64K
of paged RAM is possible using a disc-based version of BBC BASIC (referred to
as BAS128) which is available from your supplier.

Assembly language
Although programs in BBC BASIC run very quickly , some programs - such as
games - need to run even more rapidly if they are to be effective. Every time
the computer runs a program written in BASIC, it has to translate (or
interpret) each statement so that it can carry out the necessary function using
routines written in the computer's internal language - machine code. It is the
translation process which slows the computer down.

Writing a program directly in machine code means the computer need not
interpret each statement, so a machine code program runs many times faster
than its BASIC equivalent. However, writing a program as a series of numbers
is extremely difficult. Instead the program is written in assembly language.

The computer translates an assembly language program into machine code
using a built-in program called an assembler. The machine code translation of
the program can be saved on its own. When the computer next runs the
program it does not need to translate any of the instructions, and so execution
is very rapid.

Assembly language is more difficult to use than BASIC, although it results in
faster and shorter programs. Fortunately, however, your computer allows you
to mix BASIC and assembly language in one program, and it is sensible to only
use assembly language in sections of a program where speed is vital.

99

This brief program demonstrates the use of assembly language - be sure to
type it in exactly as shown:

10 MODE 135
20 DIM demo 10
30 P%=demo
40 [
50 LDA #67
60 JSR &FFEE
70 RTS
80]
90 P%=demo
100 END

Line 20 reserves 10 memory locations to hold the machine code version of the
program. P% at line 30 is used to indicate to the computer the first memory
location to be used for the machine code program.

The brackets at lines 40 and 80 indicate the beginning and end of the assembly
language section of the program. The short program from line 50 to 70 prints
the letter C on the screen. If you run the program you will see the following:

E71
E71 A9 43
E73 20 EE FF
E76 60

LDA #67
JSR &FFEE
RTS

T?e computer has used the assembler to translate the assembly language
instructions into machine code. The numbers in the left-most column are the
hexadecimal memory locations where the machine code is stored. Each
remaining hexadecimal number on the line is the equivalent of one assembly
language instruction.

Notice that running the program has only translated the assembly language
into machine code, and does not run the machine code program itself. To
actually execute the machine code, type:

CALL P%

CALL is a statement to the computer to execute a piece of machine code. It is
followed by the memory location at which the execution of the machine code is
to begin. You should find that the computer prints the letter C.

Once an assembly language program has been translated by the assembler, the
machine code program can be run independently. If you use NEW, the original
program is removed but the machine code remains in memory, as you can
prove by typing CALL P% again. The section of memory containing the machine
code can be saved on its own and used again without any need for the original

100

program containing the assembly language instructions.

The facility for mixing BASIC and assembly language instructions is a
powerful one, but any further discussion on the subject is outside the scope of
this guide. Assembly language is discussed in detail in the Reference Manual.

Utility programs
Three further utility programs are provided on the Welcome tape and its disc
equivalent.

The programming utilities are located on side 2 of the tape ,
immediately following the Welcome utilities. Load each one using the
command given within each description.

You may use the commands described below to run any of the
programming utilities individually. Alternatively, you may use the
menu system by typing:

*AD FS I RETURN I
CHAIN"UTI LITIES"I RETURN I

IoOl
CHARDES I ~ loading time 2 minutes
This utility allows you to alter the shapes of the letters and numbers that
appear on the screen; in other words, it allows you to design your own fonts.
The utility is executed by means of the command:

CHAIN"CHARDES"I RETURN I

The screen display is divided into three areas, the top showing all the current
character shapes, the central box showing an enlarged version of the
currently-selected character (together with a normal size version to its right)
and the bottom area providing a summary of the operating keys.

Characters to be redefined may be selected in one of two ways:

- by pressing the appropriate key on the keyboard (for standard keyboard
characters);
by using the cursor control keys to position the cursor under one of the
characters at the top of the screen and pressing IDELETEI. This method may be
used to select both standard characters and those which cannot be obtained
directly from the keyboard.

Once a character has been selected, an enlarged version is shown in the central
box. Thereafter, the cursor keys may be used to select a particular element in
the central box and depression of IRETURNI changes its state (i.e. if it is currently
is white, IRETURNI switches it to black and vice versa). The effect of any change is
reflected immediately in the character to the right of the grid.

IESCAPE I is used to end execution of the program.

101

I COpy I is used to save the current font to either tape or disc, making it possible to
design a number of fonts, each of which may be reloaded when required.

I TAB I is used to reset the font to normal. Note that unless you use I TAB I before
ending the utility, the effects of any changes to the font will remain until you
switch the computer off or execute a hard break.

ENVELOPE I [g...gJ loading time 1 minute
Brief mention of the BASIC ENVELOPE command has been made on page 98,
but the fact that it takes no less than 14 parameters makes it unsuitable for
description in a guide of this nature. However, ENVELOPE is a utility program
which enables you to experiment with the envelope command. It allows you to
change some or all ofthe various parameters and to listen to the effect that the
changes have upon the sounds generated by the computer. It may also be used
to determine the parameters necessary to generate a particular sound for
inclusion in say, a computer game.

ENVELOPE is loaded by means of the command:

CHA! N" ENVE LOPE" I RETURN I

One loaded, ENVELOPE displays a number of boxes. Two different envelopes
may be defined by changing the content of the box marked Number; the
remaining boxes represent the settings of the fourteen parameters associated
with the currently-selected envelope:

Length Length of each step 1I100sec

Pstepl Change of pitch per step in 1

Pstep2 Change of pitch per step in 2

Pstep3 Change of pitch per step in 3

Steps 1 Number of steps in section 1

Steps2 Number of steps in section 2

Steps3 Number of steps in section 3

AstepA Amplitude change in attack

AstepD Amplitude change in decay

AstepS Amplitude change in sustain

AstepR Amplitude change in release

Peak Target level at end of attack

Level Target level at end of decay

You can move between the boxes by using <-- and -->; the current box will be

102

highlighted in black. To increase or decrease the value held in the curr·enl box
press i or t as required. Alternatively, you can load a number of 'pre-sel'
envelopes by pressing any of the function keys.

The effect of the current set of ENVELOPE parameters can be heard using the
keyboard, which is divided up into two 'piano-style' keyboards:

~. ENVELOPE 1 ~ ENVELOPE 2

You may press one or several keys at a time, from either one or both envelopes.

You may replace any of the preset envelopes with one of your own by pressing
I COpy I followed by the number of the envelope you wish to redefine.

PFILL IL-_ ---' cg;;g] loading time 1 minute

PFILL allows you to design your own colour patterns in any of the graphics
modes. It is executed by means of the command:

CHAIN"PF ILL" I RETURN I

and you will first be asked which mode you wish to use. Choose which you
would like to use and type the number, the possibilities are:

Mode 0 (128)

Mode 1 (129)

Mode 2 (130)

Mode 4 (132)

Mode 5 (133)

2 colours, 640 by 256 pixels.

4 colours, 320 by 256 pixels.

16 colours, 160 by 256 pixels.

2 colours, 320 by 256 pixels.

4 colours, 160 by 256 pixels.

The other modes are unsuitable because they do not allow the display of
graphics.

103

Once the mode has been selected , a grid will be shown on the screen, with a
flashing cross in the top left-hand box; the cross can be moved around using the
cursor control keys.

The range of colours you can use to fill each box in the grid is given at the
bottom of the screen and to fill the box currently marked with a cross, simply
press the corresponding number. Each time you fill a box the large rectangle at
the top of the screen will be filled with the current pattern from the grid. The
eight parameters required to specify the current pattern are always displayed
at the side of the grid. Note, however, that the parameters are shown in
hexadecimal notation (i.e. the values are preceded with &).

Having produced a satisfactory pattern you can note down these numbers and
use them in your own programs to fill any of the solid shapes (such as triangles,
circles or ellipses) which the computer can plot.

Down the right hand side of the screen you will see a strip of coloured blocks.
This is the palette - it allows you to change the relationship between the colour
numbers and the actual colour which is seen. To alter it type P.

The pointer by the palette will then start flashing and can be moved up and
down the strip using i and t. To change the appearance of a colour number
press one of the keys O,1,2,3,4,5,6,7,8,9,A,B,C,D,E or F; this will select the
actual colour from the sixteen which are available. To return to the grid press
1 RETURN I.

104

3. Introducing VIEW

What is word processing?
Word processing has had a more profound impact on office practice than any
other application of computer technology. Consider the number and variety of
documents that are produced daily in homes and offices. Letters, memos,
membership lists, agendas, reports the list is endless.

In many cases, a document will undergo several changes before appearing in its
final printed, or written, form. Using a conventional typewriter, for example, a
rough draft may be produced, edited by hand, then retyped to obtain a final
copy. If, perhaps at a later date, a similar document is required but with minor
modifications, the whole document will have to be retyped.

A word processor offers significant advantages over the typewriter. Text
entered on a word processor appears on the monitor screen for editing and
inspection before it is committed to paper. Corrections and modifications are
simple to implement. Characters, lines or complete paragraphs can be inserted,
deleted or moved about at will. Furthermore, text may be stored for later use
with modified details such as names and addresses. Personalised copies of a
standard letter can be produced, all identical except for individual names and
addresses . The main body of the letter need be typed only once.

The VIEW word processor

Your computer is supplied with VIEW, a powerful built-in word processor.
VIEW has established itself as one of the more popular word processors
available for use on microcomputers. Whether your particular requirements
are business or domestic, VIEW will save time and effort in the production of all
kinds of text.

Although for serious word processing a disc drive is essential, a cassette system
is adequate for initial familiarisation with word processing techniques.
Throughout the chapter, sections applying exclusively to either disc or cassette
users will be marked [C':g] and [2J respectively. Similarly you will
eventually need - or need access to - a printer but this will not be assumed for
the purposes of this chapter.

Using VIEW
Before starting to use VIEW, place the function key card supplied behind the
clear plastic strip at the top of the keyboard. Ensure that FORMAT
PARAGRAPH on the card is aligned with key I to I.

105

When you switch your computer on it will probably be ready to run programs in
BASIC. In order to change from BASIC to VIEW, type:

*WORD 1 RETURN 1

The screen will look like this.

If you are currently using screen mode 7, there will be only 40 character
positions across the screen. Mode 131 , with 80 character positions, is far more
useful. We shall see later that a number of the available character positions on
each line are reserved for special purposes. To select mode 131 , type:

MODE 1311 RETURN 1

Throughout this chapter, it will be assumed that you are using screen mode
13l. Remember that modes 128 - 135 are identical to modes 0 - 7 except for the
memory that is available to hold your text. Note, however, that the VIEW
command screen will always show one of modes 0 - 7.

You are looking at the VIEW command screen. This is the screen from which
general commands such as SAVE will be issued. Note also that commands to
the operating system (*commandsl can be issued from the VIEW command
screen. For example, you can speed up the cursor movement by typing:

*FX12,3IRETURNI

To return to the standard cursor speed, type:

*FX12,0IRETURNI

106

Another useful command is *CAT which displays a list of the files stored on a
cassette or disc. More information on operating system commands can be found
in Appendix C.

We will return to the command screen later in the chapter, but for the moment
type:

NEW IRETURNI

then press IESCAPE I and you will switch to the text screen. IESCAPE 1 always
switches, or toggles, between command and text screens. Note that any text
that you have typed in will not be affected by pressing IESCAPE I.

Entering text

The text screen looks like this.

The flashing white symbol is the cursor - any text typed in will appear at the
current cursor position. Type a few lines of text without pressing IRETURNI .

Notice what happens as you reach the end of each line. If a word will not fit on
the current line, it is automatically carried over to the next line . VIEW takes
care of new lines for you ensuring that no lines are too long and that no words
are split.

All the usual keyboard functions are operative in VIEW just as in BASIC so
that if, for example, all your text appears in capitals, pressing 1 Ettil I will switch
to lower case characters.

It will soon be obvious that VIEW is doing more to your text than just carrying

107

over words that will not fit on a line. VIEW always comes on with the
justification feature on, - indicated by the J in the top left corner ofthe screen.
This means that all text is vertically aligned at both the left and right hand
ends of each line. In order to make all lines of text the same length, spaces are
automatically inserted between some of the words.

If automatic justification is not required, it can be switched off by holding down
1 CTRL 1 and pressing 1 '3 I. Try it now and you will see the J disappear from the
top of the screen. If you now type a few lines of text, all word spacing will be
identical but lines will be of varying lengths.

Switching justification on and off is just one of the facilities you will see labelled
on the fuction key strip. VIEW has been designed in such a way that the most
frequently used commands are obtained by pressing a function key. These
functions are the ones you can see labelled along the bottom of the key strip.
The row above consists of functions called by simultaneously pressing 1 SHIFT 1

and a function key, and the top row facilities require simultaneous depression
of [WiLl.

These are called immediate commands because they can be issued directly
from the text screen without switching to the command screen. Throughout
this chapter, immediate commands will be referenced by the key number
together with its function. For example:

ISHIFTI + I '7 1 (SET MARKER)

means 'hold down SHIFT and press function key fT.

The line of dots and asterisks along the top of the screen is called the ruler.
Amongst other things , it determines the maximum length of your lines of text.
By adjusting the ruler, you can reduce or increase the number of characters per
line for the text that follows it. Press IRETURNI a couple of times to leave some
space, then press:

1 CTRL 1+1 '5 1 (RULER)

Another copy ofthe mode 131 standard ruler will appear. Use the arrow keys to
take the cursor to the leftmost end of the ruler, then erase part of the ruler by
pressing the SPACE BAR about ten times. Now enter a left margin stop > .
Press 1 RETURN 1 to begin a new line and type in another two or three lines of text
to observe the effect of shortening the ruler. The rightmost end of the ruler can
be adusted in the same way but using the right margin stop < .

Editing a text file

The real power of a wordprocessor lies in the facility for editing and correcting
text that has already been entered. To save time, a document called GRANT1,
on which you can tryout the editing facilities , is provided as part of your
Welcome software.

108

Ensure that you are looking at the VIEW command screen and clear the VIEW
workspace by typing:

NEWIRETURNI

Load the Welcome cassette into the recorder so that it is ready to read
side 2, reset the tape counter and wind through the tape to the end of
PFILL. Remember that you may need to use * MOT 0 R 1 to enable you

to control the recorder manually. Then type:

READ GRANT11 RETURN I

The computer will search for file GRANTl and append it to any text
currently in the VIEW workspace. If necessary, stop your cassette
recorder once loading is complete.

Insert the Welcome disc into your disc unit, then type:

LOAD GRANT11RETuRNI

The LOAD command causes any text currently in memory to be
overwritten by the new file . If you had wanted to append GRANTl to
to text currently in memory you could have typed:

READ GRANT11RETURNI

as described above.

Note that the LOAD command cannot be used to load files from cassette.

Press IESCAPE I to switch back to the text screen.

The screen will look like this:

109

You are looking at the first part of the document GRANTl. Hold down the
downward arrow key and watch what happens as the cursor reaches the
bottom ofthe screen. The VIEW text area is not limited to the screen itself. The
text area is a very large 'page', only a little of which is visible to you through the
screen. The screen is rather like a window which you can move (using the
arrow keys) to any part of the page you wish.

Use the downward arrow key to scroll to the end of the document. You will find
that the cursor will go no further than the last line of text. If you need to move
further down, perhaps to begin another paragraph, you must press IRETURNI to
add extra lines.

Clearly, moving through a long document using cursor keys alone can be
somewhat tedious. Take the cursor back up the text by holding down I SHIFT I and
pressing the up arrow key. The effect of I SHIFT I is to make the cursor jump in
blocks of one screenful rather than one line at a time; useful for scanning
quickly through a document. Another facility for speeding up movement
around a document can be seen on function keys I " I (TOP OF TEXT) and
I '2 I (BOTTOM OF TEXT). Their purpose is self evident.

GRANT! contains several mistakes, each of which can be easily corrected
using VIEW. Firstly, if the letter has been delayed, the date may have to be
changed. Using a typewriter the alteration could be made with correcting fluid
but the result is unlikely to be entirely satisfactory. In fact, when a letter
contains more than one or two mistakes, the only realistic option is to retype
the letter. VIEW enables you to correct such mistakes quickly and
undetectably.

Take the cursor to the first character of the date and type:

5 March

Your new date will replace or overtype the one on the screen. A few characters
from 26 February will remain but these can be removed by moving the cursor to
the space beyond y and using IDELETEI.

As a result of changing the date, the reference in the first sentence to last
month will have to change to in January . Do this now by overtyping.

The next mistake can be seen in line 2 where the word with has been
inadvertently typed twice. It is possible to overtype one of the words with
spaces, but unless the whole line were to be retyped this would leave a large
gap between two words. Take the cursor to the w of the first with and press:

I '9 I (DELETE CHARACTER)

You will see the character disappear and everything to the right of the cursor
will move over to close the gap. The cursor should now be on the letter i. Press
I '9 I to delete this and twice more to delete the t and the h.

llO

On line 5, a letter has been omitted from the word development. Place the
cursor on the letter p and press:

1 f8 1 (INSERT CHARACTER)

Everything to the right of, and including, the cursor position will move to the
right to make an extra space. Now type 0 and the correction is complete.

The next mistake occurs towards the end of the paragraph where a line of text
has been omitted after the word important. Place the cursor anywhere on the
line below and press:

1 f6 1 (INSERT LINE)

All lines of text below and including that line will move down to make room for
a new line to be inserted. Take the cursor to the left hand end of the blank line
and type:

therefore, that aLL members contribute to the effort

The final error in this paragraph can be seen at the bottom where a line has
been typed twice. Put the cursor on the bottom line and press:

1 f7 1 (DELETE LINE)

By this time, your paragraph will have lost its neatly formatted appearance.
Insertions and deletions will have left some lines shorter than they should be,
others will be too long. This situation can be easily remedied. Place the cursor
on the top line of the paragraph and press:

1 fo 1 (FORMAT PARAGRAPH)

The effect of this is to reposition all text from the line containing the cursor
down to the end of the paragraph so that a neat format is maintained. Note
that justification should be switched on, as shown by a J at the top of the
screen, so that the paragraph will be formatted as justified text. If, after
formatting, the paragraph is unjustified, press:

1 CTRl 1+1 f3 1 (JUSTIFICATION)

and format the paragraph again.

Having corrected the first paragraph, you should be able to correct the errors in
the remainder of GRANT!. Remember to format blocks of text as necessary,
either following each correction or after editing a complete paragraph - the end
result should be the same.

111

Your new version of GRANTl will look something like this:

112

Sheem & District Historic Buildings
Preservation Society

[ear Mernb2r

101 Nestlyn Close
Briar Canmon
SheErn SH2 4WJ

5 March

Following our Annual General Meeting in January, I wrote
to the OCP Trust with a view to obtaining financial
assistance towards our proposed renovation work on SheErn
Priory. I hope members will appreciate that the Sheem
Priory project is the most ambitious development that
the Society has undertaken. It is particularly
important, therefore, that all members contribute to
the effort that will be required if the project is to
be a success. I received a reply fron Mr Beeswing of
OCP, of which the following paragraph is an extract.

"The OCP Trust does not nonnally contribute towards
restoration work on buildings intended for business use.
However, we are aware that if the priory were not
restored, it could mean the loss of a building of great
historic interest. Consequently, an application for
assistance fron the Trust would be favourably
considered."

It w::)Uld seem that Mr Beeswing 1S syrrpathetic to our
cause and I suggest that we forward an application to
the OCP Trust as soon as possible. I would be interested
to hear suggestions fron members as to what form such an
application should take. Suggestions should be sent to
me by the end of March, in time for me to present them
to the executive meeting on April 6th. A prarpt reply
-would be much appreciated in oni2r that I might meet
that deadline.

Yours sincerely

Martyn Gilbert (secretary)

After checking that a ll mistakes have been corrected, you will want to save
your new document onto a cassette or a disc. Even if you intend further editing
in the same session, it is a wise precaution to save your text at regular
intervals. Then, if you should accidentally lose t he document from memory
(perhaps because of a power failure) , only your most recent alterations will
need to be done again.

To save your t ext file , first decide upon a filename. As the original document is
called GRANTl we would probably name the second version GRANT2.

Remove the Welcome cassette from th e recorder (without rewinding it)
and replace it with a new cassette (or ensure that you are not likely to
record over anything that you want to keep on an old cassette). Type:

SAVE GRANT21RETURNI

and the screen will show

RECORD then RETURN

Press RECORD on the cassette recorder, then press IRETURNI. Once the
fil e has been saved, t he computer will emit a bleep and the cursor will
reappear. Switch off the cassette recorder.

Remove the Welcome disc from your disc drive and replace it with a
disc onto which files can be saved. Type:

SAVE GRANT21RETuRNI

Next time you come to work on your document, you will be able to load it by
typing:

READ GRANT21RETuRNI (for cassette systems) or

LOAD GRANT21RETURNI (for disc systems)

Block Operations

The editing facilities that you have used so far , with exception of I fa I
(REFORMAT PARAGRAPH), affect no more than one line of text at a time.
However , facilities are available that operate on complete blocks of text. You
can try these techniques by entering the song Ten Green Bottles.

Press IESCAPE I to return to the command screen and clear the works pace by
typing:

NEWIRETURNI

Press IESCAPE I again to switch to the text screen and type in the first verse as
shown on the next page. Note that in this case you will have to press IRETURNI at
the end of each line because each is shorter than the standard ruler shown at
the top of the screen.

113

Ten green bottLes, hanging on the waLL
Ten green bottLes, hanging on the waLL
And if one green bottLe shouLd accidentaLLy faLL
There'd be nine green bottLes, hanging on the waLL

You can quickly produce the entire song by using the COPY BLOCK facility.
First indicate which block of text is to be copied. This is done by setting markers
at the start and finish of the relevant block which, in this case, is the entire
verse.

Position the cursor on the T at the beginning of the first line then press:

1 SHIFT 1+1 '7 1 (SET MARKER)

The characters MK appear at the top left of the screen. Then press:

1 to indicate that you are setting the position of marker 1.

A white block will appear indicating its position.

Now move the cursor to the line below the end of the verse and press:

1 SHIFT 1+1 f7 1 (SET MARKER)
,

Press:

2 to indicate that you are setting the position of marker 2.

Another white block appears, indicating the position of the second marker.

If you press IESCAPE I and examine the command screen header, you will see that
confirmation of the fact that you have positioned markers 1 and 2 is given by
the additional line:

Marker(s) set 1,2

Press IESCAPE I to return to the text screen and move the cursor to the point at
which you want the copy to appear; in this case, immediately below your second
marker. FinaJly, to execute the copy, simply press:

I COpy 1

114

There should now be two identical verses in the document and the screen will
look something like this.

Note that the two markers are still set, so by positioning the cursor and
pressing 1 COpy Ithe verse can be reproduced as many times as needed. Complete
the song by creating ten copies of the verse then editing each one as necessary.

Another useful operation enables blocks of text to be moved from one part of a
document to another. Set markers to indicate one of the verses in your Ten
Green Bottles document. Position the cursor elsewhere in the document and
press:

ISHIFTI+I fo 1 (MOVE BLOCK)

The marked verse will be transferred to the cursor position. You will notice
that, unlike the COPY operation, the markers are automatically cleared after
MOVE BLOCK. The reason for preserving markers after copying is to facilitate
a repeated copy as when compiling Ten Green Bottles.

The other block operation to be aware of is deletion, executed by setting
markers and pressing:

I CTRl 1+1 fo 1 (DELETE BLOCK)

Any text below the deleted block moves up to close the gap.

Using CHANGE
Suppose you have typed in a document and you realise that a word has been
consistently mis-spelt. You could search for each mistake and edit it

115

independently. In a long piece of text, however, you may have to make the
same correction many times and one or two occurrences may be missed.

It is easier using the CHANGE facility, which can be illustrated with your Ten
Green Bottles document.

From the command screen, type:

CHANGE/greenl red/l RETURNI

VIEW responds with a message such as

50 string(s) changed

If you switch to the text screen and examine the document you will see that all
occurrences of green have been changed to red.

You can also change the into a by typing:

CHANGE/ t he I a I I RETURN I

but the result may not be quite what you expect. The problem is that VIEW
has, quite rightly, identified every occurrence of the whether it occurs alone or
as part of there, they, lithe or pathetic. One way to overcome this problem is to
apply CHANGE not to the alone, but to the together with spaces before and
after. In other words, VIEW will search for I the I rather than Ithel .

You can try this technique by changing a back to the, avoiding the creation of
words like hthenging and fthell. Switch back to the command screen and type:

CHANGE I a I the IIRETURNI

Switch to the text screen and observe the effect.

You can apply CHANGE to phrases as well as single words. For example:

CHANGEI insect I smaLL invertebrate segmented animaL IIRETURNI

The slash (I) in a CHANGE command is known as a delimiter because its
function is to mark the beginning and end of a word or phrase. A space may be
used instead of a slash provided no other spaces are required in the command.
For example:

CHANGE kangaroo wa L LabylRETuRNI

As a diversion, readers may like to use CHANGE on single characters in order
to decode the following passage. Despite its appearance, only five CHANGE
operations are necessary!

116

Kzch ykzj, zw whk hkighw of whk woujiqw qkzqon, ouj ciwy
zcwq zq hoqw wo whouqzndq of viqiwojq fjom homk znd
ovkjqkzq. Ykw in whk midqw of zLL whiq zcwiviwy, whkjk
zjk LiwwLk ozqkq of chzjm znd pkzck.

The CHANGE operation is just one of a group of global operations that provide
very powerful editing facilities. Treatment of more advanced techniques is
outside the scope of this introduction and users are advised to consult the
VIEW User Guide.

More on rulers

Clear any text that you have typed in by switching to the command screen and
typing:

NEWIRETURNI

If you are not already in mode 131 as shown at the top of the command screen,
type:

MODE 1311 RETURN 1

Press IESCAPE 1 to switch to the text screen.

As you saw earlier, the state of the text ruler determines the maximum line
length for the text below it. The ruler at the top of the current screen is the
standard ruler for mode 131 and it corresponds to a line length of74 characters.
Each mode has its own standard ruler and that for mode 135, for example,
corresponds to a line length of 34 characters.

Put another standard ruler on the screen by pressing:

1 CTRL 1+1 '5 1 (RULER)

It is good practice always to put in a ruler before starting to enter text. This
ensures that your document is not mistakenly reformatted under a different
ruler at a later date .

Now type in the text shown below. Remember that there is no need to press
1 RETURN 1 at the end of each line.

You may have woken this morning to the sound of a
mlcroprocessor controLLed aLarm cLock. The cLothes that
you put on and the breakfast you ate were probabLy
produced under computer controL.

The layout of the text can be altered by editing the current ruler. Take the
cursor up to the ruler and change it to look like the one shown below.
Remember, you can use any of the usual editing facilities such as overtyping
and deleting characters.

> ••••... * * * * <

117

Now press I RETURN I to move the cursor from the newly edited ruler to the first
line of the text. You will notice that the ruler at the top of the screen now
matches the new current ruler. The top ruler always acts as a reminder as to
which ruler is operative in the current cursor position. Press:

1 fo 1 (FORMAT PARAGRAPH)

You may want the next paragraph to have a different ruler setting, in which
case a new ruler must be added to the document. You can do this by pressing:

1 CTRL 1+1 f5 1 (RULER)

to put a standard ruler in the required position, then editing the ruler as
appropriate. Sometimes it may be more convenient to copy the current ruler
and edit that - pressing ISHIFTI+lcopvl together will generate a copy of the
current ruler at the current cursor position. Having created your new ruler,
any text typed in below it will be subject to the new margin setting, as shown
on the next page.

118

VIEW recognises a ruler by the two dots in the left margin. They are normally
followed by a line of dots and asterisks bounded by margin stops > and < . The
left margin stop is omitted on standard rulers. With two exceptions, the
characters that appear between the margin stops > and < are irrelevant so it
makes sense to adopt the convention of using a line of dots as this renders the
ruler immediately recognisable to the user.

The asterisks in standard rulers are TAB stops. Their function can best be
illustrated by putting the cursor on a blank line then pressing the (TAB (key
two or three times. The cursor jumps from one TAB position to the next. This
facility is particularly useful in constructing tables. Having used (TAB (to move
the cursor across the screen, the effect of pressing (DELETE(may surprise you.
Instead of moving by one character position at a time, the cursor jumps back
from each TAB stop to the next. This effect is less surprising when you realise
that TAB is, in fact, an invisible character. Cursor movement, therefore, by
means of arrow keys or the (OELETE(key, is still taking place from character to
character.

The other special character that may be used in a ruler is b for bleep. This
corresponds to the bell that signals an approaching end-of-line on a typewriter.
A bleep will sound whenever you type past a position at which a b has been
inserted in the ruler.

119

Back to GRANT2

Load the document GRANT2.

It is often necessary to carry out wholesale changes to the way in which a
document is structured and formatted. Consider the suggested changes that
have been marked up on GRANT2 as shown below.

120

Sheen & District Historic Buildings
Preservatio n Society

Dear Membar

101 Nestlyn Close-+
Briar Camron •
Sheen SH2 4WJ •

5 March -----i.~

FollCMing mr Annual General ~ting in January I I wrote
to the OCP Trust with a view to obtaining f inancial
assistance towards our ro sed renovation work on Sheem
Prio I ope rs Wl appreclate t at t e een
Prlory project is the most ambitious development that
the Society has undertaken. It is particularly
irrportant, there fore, that all rrernbers contribute to
the effort that will be r . red if the r o ·ect is to
re a success. I recelv a rep y ran Mr Beeswlng of
OCP, of wtuch the following paragraph is an extract. . ~

OCP Trust <'bes not nonnally contribute t ards
at ion· \toUrk on buildings intended for business use.
r, we are aware that if the priory wer not
ed, it could mean the loss of a building of reat
ic interest. Consequently, an applicatio for
ance fran the Trust would be favo ably

It would seem that Mr Beeswing is sympathetic to cur
cause and I suggest that"" forward an application to
the OCP Trust as soon as possible. I would be interested
to hear suggestions fram members as to what form such an
application should take. Suggestions should be sent to
me by the end of March, in time for me to present them
to the executive meeting on April 6th. ~ ~E~~ !epl)

i li &9 ~ ~R i~~Ti~~~~ii iR 9~8s~ %R~ I ~i~R~ M@B~
iRa:~ 1i8&lili:1i18

Yours sincerely

Martyn Gilbert (secretary)

Firstly, the name of the society should be centred on the page. You could do this
by inserting spaces but you would have to count characters or judge the right
position for both lines. Also , if the width of the text were to be adjusted at a
later date the positioning would no longer be accurate.

It is far easier to use one of the stored commands available in VIEW. These
commands are entered in the stored command margin to the left of the text
area. They have no immediate effect but are simply stored until the document
is printed, whereupon they ·come into operation. On this occasion you need the
stored command CE, which stands for CEntre. Its function is to centre text
according to the current ruler, so if a new ruler is inserted the relative position
of the text will still be correct.

Switch to the text screen and take the cursor to the first of the two lines to be
centred. Press:

ISHIFTI + I '8 I (EDIT COMMAND)

The cursor moves into the left margin. Now type:

CEIRETURNI

The command CE remains in the margin and the cursor moves back into the
text area.

Take the cursor to the second line to be centred and repeat the operation.

The stored command CE has no immediate effect, but there is a way to preview
the document as it would appear if it were printed. Switch to the command
screen and type:

SCREENIRETURNI

You should see the first part the document with no ruler and with the name of
the society centred. In order to preview the next screenful, press and release
1 SHIFT I. Once the complete document has been SCREENed, press IESCAPE! to
return to the text screen.

The SCREEN command is a convenient way of checking on the appearance of
text before it is printed. The effects of rulers and of stored commands can be
previewed before committing anything to paper.

You can use another stored command to position the address at the top of the
letter. Take the cursor to the first line of the address and press:

ISHIFTI+I '8 I (EDIT COMMAND)

Now type:

RJ l RETURNl

121

Enter the same stored command into the left margins of the other lines of the
address and the date, as shown below.

RJ stands for Right Justify. Again, its effect is not immediate, but if you
switch to the command screen and type:

SCREEN I RETURN I

the result should be something like this.

122

Press 1 SHIFT 1 until the screening is complete, then IESCAPE 1 to return to the text
screen.

You will come across more stored commands later in this chapter. For the
moment, we will move on to the other changes to be carried out to GRANT2.

A block of text has to be moved from the first paragraph to the end of the letter.
To do this , set markers 1 and 2 to indicate the beginning and end of the block.
Unlike the example you saw in the last section, this block lies in the middle of a
paragraph so you cannot set markers on blank lines. Simply set marker 1 on
the I of line 4 and marker 2 in the space immediately following the last
character of the block. This is before the I on line 9.

Take the cursor to the point at which you want the block to appear; in this case,
two lines down from the end of the final paragraph. Press:

ISHIFTI+I fo 1 (MOVE BLOCK)

If, as in this instance, moving a block has destroyed the format of the text,
simply reformat the affected paragraphs by positioning the cursor on the first
line and pressing:

1 fo 1 (FORMAT PARAGRAPH)

The next alteration to GRANT2 involves paragraph two, which has to be
reformatted to a narrower text width. This involves inserting and editing a new
ruler above the relevant paragraph. As you have seen, however, each ruler
affects all the text below· it until the occurrence of the next ruler. As we only
want one paragraph to be reformatted, it will be necessary to insert a new ruler
below the paragraph as well as above it.

Position the cursor above the first line of the paragraph and press:

1 SHIFT 1+1 COpy 1

to obtain a copy of the current ruler. Now put another copy of the current ruler
below the last line of the paragraph. The first of these two rulers can now be
edited to obtain the required format.

123

Note that no account has been taken of the tab positions (*) as tabs are not be
used in this particular document. For documents in which tabulation is
required the positions of the asterisks must be adjusted accordingly.

Now all that remains is to position the cursor on the first line of the paragraph
and press I fa I to reformat.

NJ) . ' , ,." , t ,

. t, , "... 0' .
DUr _ •• r

...... .. . ' " ... (

Foll .. lltt Our Rnnu.I 6.n.ril MHtinlJ in liftuirlJ , [.. oh
to tb. DCP Trust ,it. i vi .. h ollhini., finilnciil
iUlshnc. tOlNrds our ,ropos.d r.lOViltiDn IIrk on Sh ••• '"or, . I mm ••• ..,h I '" ' iog .1 m, 01
... ,,~ tb. 1.1l00i" """..,11 is ,n flt ... t.

), 1 " . ••••• • ,", . ,.,., ••••••••• , , •• " (

'Th. OCP T •• st .1fS .. t l1y ... t.ill.1f
t s mtor.tioo .. t .. buildi." i.tftldod
lor b"iOfSS 1It_, It or. _. tllot
11 tilt priOl'lj lilt ... t , it coold ...
th. I", of. builGiog of ",t lIistDl'i,
"t t. ConstqIlfIltly, .. .,,1 icoti.. 10.
",ist .. ,. I ... the Trust •• Id 11. 10 0111.
eonsidPr.d. I

".""', .. ,', ...• ,"', ..•.... ,.,., .. . " .•.. " ...• ,(
It ... ld th.t '" Bm.iog is ".,.th.ti, t •• u.
tiUS. iod I SU99.st thit • forlNrd in ipplicition to
th. DCP Trust as soon is possibl •. I lOuld b. inh·".sbd
to bur SU99.st ions fro • ••• r5 is to .it for. such in

Another alteration to GRANT2 involves deleting the final sentence of what is
now paragraph three. Position the cursor on the letter A at the beginning of the
sentence and press:

I f3 I (DELETE END OF LINE)

The following two lines of text can be deleted by positioning the cursor and
pressmg:

I fl I (DELETE LINE)

Finally, it appears that OCP should have been typed as OPC. Carry this out
using CHANGE.

Having completed your second edit, the document will be ready to save again
onto a cassette or a disc. If you choose to keep the same name that appears at
the top of the command screen, then all that is necessary is to type:

SAVE I RETURN I

VIEW will assume that you require the filename currently shown.

Note that the filename on the command screen can be changed at any time. For
example, to change the filename to FRED type:

NAME FREDIRETURNI

124

It is not a lways wise to save an edited document under its former name. If you
are using a disc system, the new file will overwrite any other file with the same
name. In many cases, this is perfectly acceptable but you may decide you want
to keep older versions , perhaps as a security measure. If this is the case, then it
makes sense to use a numbering system such as GRANTl , GRANT2, GRANT3
and so on. Never include spaces in your filenames. Everything following a space
will be ingored so that GRANT 1, GRANT 2 and GRANT 3 will be treated as
the same name.

Printing from VIEW
When instructed to print, VIEW sends codes to a printer driver program
which controls the operation of the printer. The driver program contained in
VIEW is perfectly adequate for straightforward printing and will operate most
types of printer although it is possible to use more sophisticated drivers. We will
come to these later but for the moment it is assumed that you are using the
default printer driver contained in VIEW.

There are two ways to print. If you want to print a copy of the file that is
currently in the computer's memory, all that is necessary is to switch to the
command screen and type:

PR I NT I RETURN I

Alternatively, you can print from a file held on disc or cassette without
affecting the text currently in memory. To print a file called GRANT3 , for
example, type:

PRINT GRANT31 RETURN!

Try printing a few pieces of text to get used to the method. Remember, if you
want to see a simulated print-out on the screen before committing anything to
paper you can SCREEN a file as described on page 121.

If you print a document that carries over to more than one page, VIEW
assumes a page length of 66 lines of text. If this is inappropriate, it can be
changed by entering a stored command at the beginning of the document.
Press:

! SHIFT 1+1 '8 1 (EDIT COMMAND)

The cursor moves into the left margin. Now type:

PL! RETURN!

The command PL remains in the margin and the cursor moves back into the
text area. Now type:

50 I RETURN!

This number specifies the number of lines in the new page length.

125

Subsequent PRINT or SCREEN operations on that file will now result in a page
length of 50 lines.

Sometimes page breaks occur at inconvenient points such as in the body of a
table or immediately following a heading. This may be remedied using the
stored command PE - which stands for Page Eject. The command is placed in
the margin wherever the printer is required to move on to a new page. It
overrides the automatic page breaks specified in the PL stored command.

On page121you were introduced to the stored commands CE and RJ. Now you
can add PL and PE to the list. These commands serve to illustrate the way in
which stored commands operate in VIEW and they are sufficient for most
general printing tasks. However, there are many more stored commands
available in VIEW and users are referred to Appendix I and the VIEW User
Guide.

Printer drivers

A wide range of printers is available, some offering sophisticated features such
as bold type, underlining and sub-scripts. You may have noticed the labels
HIGHLIGHT 1 and HIGHLIGHT 2 on the function key strip. They are used to
insert codes that identify words to be printed in a special way, normally
underlined or printed in bold type. In order to utilise these special features each
kind of printer uses a different set of codes and requires a tailor-made printer
driver.

The Printer Driver Generator is a program for producing printer drivers to meet
the needs of particular printers. Once generated, a driver can be saved on disc
or cassette to be called up whenever required. The generator is available from
your dealer.

Additional features of VIEW
This concludes the introduction to word processing using VIEW. By now you
should have an understanding of what word processing is all about and a
working knowledge of VIEW. As you will probably appreciate, we have been
able to describe only the basic features of the word processor. Given below are
outlines of some of the more advanced features of VIEW, operational details of
which can be found in the VIEW User Guide.

Macros

A macro is a piece of text that can be printed by entering a unique name in the
margin, rather like a stored command. The macro may be printed as often as
required merely by repeating the name in the margin. A macro can be modified
so that each time it is called, different words or phrases are inserted at
particular positions.

126

A corn mon use of macros is in the printing of personalised standard letters as
mentioned in the introduction to this chapter. The letter can be printed as
many times as needed and each copy will include a different name and address.

Global editing
You have used the CHANGE command to alter words throughout a document.
Simila r operations include SEARCH, which will locate items of text and
REPLACE which performs the same job as CHANGE but gives you the option
to accept or reject each alteration.

Special symbols can be used which enable all of these facilities to operate on
invisible characters such as tabs and carriage returns. In addition there is a
wild card symbol which can be used, for example, to search for all occurrences
of a word even though some occurrences may be mis-spelt.

Further printing facilities
Additional printing facilities include the use of headers and footers. They can
be used to print a document with , for example, automatic page numbering and
a running title. The illustration below shows one effect that can be achieved by
differentiating between odd and even numbered pages.

CHAPTER 1 CHAPTER 1

Page 4

page 2

127

4. Introducing ViewSheet

What is a Spreadsheet?
Imagine a huge sheet of paper marked out in rectangles by a series of
horizontal and vertical lines. Each of the boxes so formed may be individually
identified by reference to the appropriate column and row. The columns are
labelled A, B, C, and so on whereas the rows are numbered from 1 to 255. Thus
an individual box, or slot, might be called A2 or B4 or F99.

In the diagram below, slot C4 has been shaded:

2

3

4

5

6

A B c o E

<CC

F

A spreadsheet program simulates such a sheet of paper and allows you to enter,
into any slot, one of three things:

A label, that is a piece of text
A number, such as 7 or 1234.56
A formula containing references to other slots

It is the facility for entering formulae that makes the spreadsheet such a
powerful tooL Once a spreadsheet has been set up, any new values entered can
be automatically be related to the items already recorded.

For example, you might enter the number 27 into slot B3 and 19 into B4. If you
were to put the formula B3-B4 into the slot B5, the result would be as shown
opposite.

128

2

3

4

5

6

A B

27

19

8

c o E F

Labels can be added to make your spreadsheet more meaningful:

2

3

4

5

6

A

SALES

COSTS

PROFITS

B c o E F

27

19

8

The contents of any slot may be changed and the effects of such changes can be
observed over the rest of the sheet. In our simple example, changing the
COSTS in B4 will automatically adjust the PROFITS in B5.

This is obviously a trivial example, but it points to the value of spreadsheets in
investigating 'what if..?' type questions such as:

"If I borrow £1000 over three years and the interest rate is held at 13.5% my
payments will be £39.03 but if I increase my payment to £45 I can "

Calculations that would be very repetitive if carried out by conventional means
are achieved with no greater effort than entering the data on which they are
based. Thus spread sheets are widely used in industry and commerce for
financial modelling and forecasting. At home and in small businesses, they are
used for budgeting and accounts.

ViewSheet

Your BBC Microcomputer has a powerful built-in spreadsheet program,
ViewSheet. It allows you to set up spreadsheet displays, vary them at will,

129

save them onto disc or cassette, retrieve them, and print them in whole or in
part.

Furthermore, ViewSheet is compatible with VIEW. In other words,
spreadsheets can be incorporated into word processed text, edited as required,
and printed as one file . If you have read the Word Processing chapter you will
notice that there are many similarities between the operational details of
VIEW and ViewSheet. Both are members of the View Family from Acornsoft.

Using ViewSheet
Before starting to use ViewSheet, place the function key card under the clear
plastic strip at the top of the keyboard. Ensure that DELETE CHARACTER is
aligned with key ill.

When you switch your computer on, it will be ready to receive BASIC
programs. In order to change from BASIC to ViewSheet, type:

*SHEETIRETURNI

The screen will look like this.

In screen mode 7, there are only 40 character positions across the screen . As in
VIEW, mode 131 with its 80 character positions is far more useful. To select
mode 131, type:

MODE 1311 RETURN 1

Throughout this chapter, it will be assumed that you are using screen mode 131
although the command screen will always show the mode number in the range
0 - 7.

130

ViewSheet is now displaying the command screen. Press IESCAPE 1 and you will
switch to the sheet screen. Pressing IESCAPE 1 always switches, or toggles,
between the command screen and the sheet screen. Note that the contents of
your spreadsheet are not affected by pressing IESCAPE I.

Moving around the spreadsheet

Now the screen looks like this.

What you are looking at is the top left-hand corner of the spreadsheet. Along
the top you will see the letters A to I and down the side the numbers 1 to 19.
Thus, as mentioned earlier, any slot may be uniquely referenced by a
letter/number pair such as Al or EI5.

The white rectangle in slot Al is the cursor. One of its functions is to provide a
means of moving about within the spreadsheet so that you are not permanently
looking at the top left-hand corner. Press the downward arrow key several
times to take the cursor down the screen and notice what happens when it
reaches the bottom. In effect, you are moving the whole screen down the sheet
one step at a time. If you were to carry on long enough, you would reach the
bottom of the sheet as shown by row 255.

You can move across the sheet in the same way, using the right and left arrow
keys to move the cursor. The columns are labelled A to Z followed by AA to AZ
and so on, through to the 255th column which is labelled ID.

In order to move around the spreadsheet more quickly, you can use the
auto-repeat facility . Press one of the arrow keys and hold it down for a few

131

seconds. The cursor will jump quickly from slot to slot as though you were
pressing the key repeatedly.

Another way to speed up cursor movement is to hold down I SHIFT I as you press
t.he arrow key. Instead of moving at a rate of one slot at a time, the cursor now
j :lmps in blocks equivalent to one screenful. Use this method now to take the
cursor back to slot AI.

When in the sheet screen the current cursor position is always shown at the top
of the screen. It should now read:

SLOT=A 1

but it will change as you move the cursor around. Also shown are the contents
of the slot. At the moment this will appear as:

CONTENTS=*BLANK*

Entering information

Make sure the cursor is on slot Al then type:

RENT! RETURN I

You will see the word RENT appear in the current cursor position. Now move
the cursor down to A2 and type:

RATES (do not press IRETURN!)

The word appears near the top of the screen but not, as yet, in the spreadsheet.
The word RATES is on the editing line. It will stay there until you press I RETURN I
and in the meantime you can edit it or delete it (using the IDELETEI key) without
affecting the contents of the sheet. The editing line is particularly useful when
making a complex entry that you want to check before committing it to the
sheet. We will look at editing facilities later in the chapter.

Press:

to transfer RATES to the sheet, then enter FUEL into slot A3 and TOTAL into
slot A5 . A4 will be left blank to aid clarity of presentation.

RENT
RATES
FUEL

TOTAL

So far we have been entering words or labels into the sheet. Naturally they
cannot be used in calculations but labels are necessary as headings or
explanations. The letter L at the top of the screen shows that the slot currently
indicated by the cursor contains a label.

132

Now take the cursor to slot Bl then type:

1261 RETURNI

You have now entered a value into Bl. A value may take the form of a number
or or a formula - anything that can be used in calculation. Whilst the cursor is
on Bl, you should see the letter V at the top of the screen. This indicates that
ViewSheet recognises the contents of Bl as a value rather than a label.

Now enter, say, 37 and 66 into B2 and B3 respectively. Your spreadsheet now
contains:

RENT 126
RATES 37
FUEL 66

TOTAL

Take the cursor to B5 and enter:

B1+B2+B3IRETURNI

The number 229 should appear as the total in slot B5. Note, however, that the
CONTENTS= line at the top ofthe screen still shows the formula Bl + B2+ B3. We

can see, then, that there are two pieces of information associated with a slot
containing a formula. Firstly there is the formula itself - in this case
Bl + B2+ B3; secondly there is the number obtained by evaluating the formula
- in this case 229. When we look at a spreadsheet, all values appear as numbers
whether entered directly or calculated from a fomula . However, the CONTENTS=
line always shows how the number in a particular slot was originated.

If at this point slot B5 does not hold the total, the chances are that you have
mis-typed the formula. Each of the variables used in a formula must be a slot
reference such as Bl or AC123. If ViewSheet cannot recognise it as a slot
reference it will assume the entry to be a label and will reproduce it in the slot.

Below are some examples of formulae that could be used in ViewSheet. Note
that multiplication and division are carried out using * and I.

(4*A1)/B7 5*(C3-B3) (D1+E1+F1)/(H8*H9)

As mentioned earlier, the real power of ViewSheet lies in the ability to
investigate the effects of changing one or more of the values held. Simply
overwriting the contents of the slot is often the most convenient method of
making such changes. Take the cursor to Bl and type:

1311RETURNI

The number 131 will overwrite the existing contents of slot Bl.

Furthermore, the contents of B5 will automatically adjust to show the new
total.

133

At thi :::; point, you may wish to experiment by entering values and using them
in formul ae. Clearly, the example we have looked at is particularly simple. In
the next section, we will examine a more realistic spreadsheet that has already
been created and discover some of the ways in which it might be used.

U sing a spreadsheet

An example spreadsheet is provided with the Welcome software.

((c)) If you have used the VIEW file GRANT 1 your cassette should already
be wound to the appropriate point.

Press IESCAPE I to switch to the command screen then type:

LOAD ACCOUNTIRETuRNI

The computer will search for the file called ACCOUNT and will load it
into the ViewSheet workspace. Once loading is complete stop the
cassette recorder.

(d) Press IESCAPE I to switch to the command screen then type:

LOAD ACCOUNTIRETURNI

The computer will load a file called ACCOUNT into the ViewSheet
workspace.

Press IESCAPE I to switch back to the sheet screen. The screen will look like this:

I SLOI'I!
CO.JE.TS",tlllnk'

• H 8 C D E.. F 1 1

...... -...... 2 Sh ••• , Di,t",t H.8.P. Soci.t~

.... , . J .------- -------- -------- --------

...... 4

...... 5 m ~ ~ • ~ m
.. 6 PHYIlITS
.. 7 --------

... 8 1", pa<jlOOnt5 45.55 45.55 45.55 45.55 45.55 45.55

... ! ""h.! 1.118 184.51 1.118 U8 8.11 I .•

.. li s'tar! .. PtO'" lUI 1.81 1.118 li.79 5.25 I .•
..... 11 t'sum tIP .. ", 5.88 1.11 4.58 U8 8.11 I .•

.. 12 roo. hI" 11.51 1.11 12.58 U8 12.51 I .•
0'" .13 -------- -------- -------- -------- -------- --- ----- -------- -------
..... 14 tot,l pa,",,.ts 88,43 23U5 62.55 56 . 34 63,31 45.55
.... ,15 -------- -------- -------- -------- -------- -------- -------- --------
..... 16 RECEIPTS
..... 17 --------
..... 11 ,,1. of T shorts ... 8 !.II l.iI 68.iI 84.51 56."

.. 1' ,,1. of books 12 .51 37 ,51 25,iI 12.51 1.11 11.25

ACCOUNT shows the Sheem Preservation Group's annual accounts for the
year 1985/86. The full sheet is shown opposite.

134

i-'
W

'"

• •• • ••• • A •••••• •• B •••• • •• • C • • •••••• D •• ••• ••• E •••• •••• F •••• • ••• G •• •• •• • • H •••• •••• 1. J• .• . K •••••• •• L • •••••• • M • •• •• ••• N •.•• ••• • 0

· .1
· .2 Sheem & District H. B.P. Society Accamts for: ' 1985-86
· . 3
· .4
• .5 APR MAY JUN JUL AUG SEP ocr NDV DEC JI\N fEB MAR TOTAlS
• .6 PAYMENI'S
. . 7 - -------
.. 8 loan payments 45.55 45.55 45.55 45.55 45.55 45 . 55 45. 55 45 . 55 45 . 55 45 . 55 45 . 55 45.55 546 . 60
.. 9 printing 0. 00 184.50 0.00 0.00 0.00 0.00 0.00 99 . 00 0 . 00 0.00 0. 00 0 .00 283.50
. 10 s ' taryexpenses 16.50 0 .00 0.00 10.79 5.25 0. 00 0.00 8. 30 6 . 80 0. 00 0. 00 0. 00 47.64
.11 t' sure r expenses 5. 88 0.00 4 . 50 0 . 00 0.00 0.00 0. 00 0.00 0.00 22.00 3.60 0 .00 35.98
.12 roam hire 12.50 0.00 12.50 0.00 12.50 0.00 12.50 0.00 12.50 0. 00 15.00 0.00 77.50
.13 - ------- -------- ----- --- - ------- -------- - ------- ---- ---- -------- --- ----- -------- -------- ---- ---- -------- - ----- -- --------

.14 t otal payments 80.4 3 230 . 05 62 . 55 56 . 34 63.30 45.55 58.05 152 . 85 64 . 85 67 . 55 64.15 45.55 991. 22

.15 -------- -------- -------- -------- -------- -------- -------- -------- -------- -------- -------- - ------- -------- -------- --------

. 16 RECEIPTS

. 17 - -------

. 18 sale of T shirts 0. 00 0.00 0. 00 68 .00 84.50 56 . 00 40.50 26 . 00 58 . 00 0. 00 17.50 22.50 373.00

.19 sale of books 12.50 37 . 50 25.00 12 . 50 0 . 00 11.25 64.00 80 .00 125 . 00 16.00 0 . 00 37 . 50 421. 25

.20 Wynne's donation 0.00 650.00 0. 00 0 . 00 0. 00 0.00 0. 00 0. 00 0. 00 0.00 0.00 0. 00 650. 00

. 21 members fees 135.00 320.00 200 .00 57 . 00 88.00 275.00 300.00 48.00 25 . 00 35.00 1 08.00 321.00 1912.00

.22 - ------- - ------- -------- - ------- -------~ - ------- -------- - - ------ -------- -------- -------- -------- -------- - ------- ------ --

. 23 total receipts 147 . 50 1007 . 50 225 . 00 137 . 50 172.50 342 . 25 404.50 154.00 208.00 51. 00 125.50 381.0 0 3356.25

.24 -------- -------- -------- --- ----- -------- - ------- -------- -------- -------- -------- -------- -------- -------- -------- ---- ----

.25 net total 67.07 777.45 162 .45 81 . 16 109 . 20 296 .70 346.45 1 . 15 143.15 -16 . 55 61.35 335 . 45 2365 . 03

.26 -------- -------- -------- -------- -------- -------- - ------- - -------

The top half of the sheet shows the society's monthly expenditure throughout
the year with monthly totals shown in row 14. To the right (column 0) is a list
of annual totals for each item. The lower half of the sheet shows a
corresponding table of receipts and the bottom row (25) gives a net total for
each month. The net total for the whole year is given in slot 025.

Most of the labels on the left ofthe sheet occupy two slots. In this sheet, all slots
have been set to a width of eight characters so some abbreviation of labels has
been necessary. This could have been avoided by placing the labels in a
'window' of, say, fifteen characters in width. However, the techniques of
extending slots and setting windows are outside the scope of this guide and
users are advised to consult the ViewSheet User Guide.

Initially, the cursor will rest in slot AI. Use the downward arrow key to take
the cursor down column A. The L that appears in the top left corner of the
screen indicates that the contents of these slots are labels. Note that the labels
appear in the CONTENTS= line at the top of the screen.

Now take the cursor to C8. At the top of the screen, the L changes to a V,
indicating that this slot contains a value.

Move the cursor down to C14 and look at the CONTENTS= line. This slot contains
a formula giving the total payments for April. In fact, C8C12 specifies a range
of slots, and when used as a slot formula it means the total of all the slot
contents in the range, i.e. C8+C9+C10+Cll +C12 .

This is an example of a sheet that might be used by a small business for
calculating the weekly wages of employees and the total wage bill. This type of
application is ideally suited to a spreadsheet as it often involves extensive use of
calculations, particularly if the workforce is large.

Spend a few minutes exploring the sheet using the techniques described earlier
for cursor movement. The current values should be the same as those shown in
the illustration on the previous page.

You will see that the label in K2 includes single quotes. It is necessary in this
case to include quotes - or any other character that could not be part of a
formula - in order to indicate that 1985-86 is intended to be a label. Otherwise,
ViewSheet will subtract 86 from 1985 and place the result in K2!

When you are ready to return to the top left of the sheet, press:

I f7 I (GO TO SLOT)

then enter the slot reference:

A11RETURNI

This is a useful facility for moving quickly to anywhere on the sheet provided
an appropriate slot reference is known.

136

Take the cursor to C12 showing the payment for room hire in April. Change the
value in this slot to, say, 10.25 . Almost immediately, the value in slot C14
adjusts to give the new total payments for April. All the other values that are
dependant on C12 will also have been adjusted or recalculated. This may be
verified by inspecting, for example, the net total in C25 or the final total in 025,
and comparing these values with the original ones as shown on page 135.

It is important to remember the way in which ViewSheet recalculates.
Recalculation takes place from left to right along each succeeding row from top
to bottom. Thus if a formula contains references to slots that appear later in the
sheet, it may not automatically recalculate when those values change. In this
case, it is necessary to press:

ISHIFTI+I fl 1 (RECALCULATE)

or simply 1 TAB I, which has the same effect.

One other facility is worth noting before you go on to create a spreadsheet. In a
sheet like ACCOUNT, it is all to easy to inadvertantly omit a row or column
and the omission might not even be noticed until the sheet is virtually
complete.

In ACCOUNT, for example, a row of receipts from a council grant may have
been missed out. Place the cursor anywhere on row 21 and press:

1 SHIFT 1+1 (2 1 (INSERT ROW)

Everything below the cursor will be shifted down to accomodate a new row.
Place the label counci L into slot A21 and grant into B21.

Take the cursor to slot C21 and enter a value, say, 75. The first thing you will
notice is that, unlike the other values on the sheet, this one is not displayed to 2
decimal places. Ignore this for the moment. You will see later in the chapter
how a slot may be formatted to display a specified number of decimal places.

The interesting point to note is that the value in C24 has recalculated to display
the new total, even though the original formula in C23 did not allow for the new
row. This is because ViewSheet has automatically adjusted the range specified
in C24 to take account of the new row. This may be verified by placing the
cursor on C24 and looking at the CONTENTS= line. Originally it contained
C18C21, now it contains C18C22.

Similarly, columns can be inserted by pressing:

ISHIFTI+I (, I (INSERT COLUMN)

Before finishing with ACCOUNT, experiment with INSERT ROW and
INSERT COLUMN as well as the complementary functions given by:

1 CTRl 1+1 (, I (DELETE COLUMN) and

137

1 CTRL 1+1 '2 1 (DELETE ROW)

You will find that initially you are unable to delete rows and columns. This is
because of a protection feature which has to be switched off. Press IESCAPE I to
switch to the command screen then type:

PROTECT OF FI RETURN I

You will see the message

Protection off

Press IESCAPE I to return to the sheet screen and you will be able to delete rows
and columns. It is good practice to switch protection back on once the required
deletion has been carried out. This is done using by typing:

PROTECT ONIRETURNI

from the command screen.

Creating a Spreadsheet

Having examined a spreadsheet and tried some ViewSheet techniques you are
now going to create a spreadsheet from scratch. The 'pen and paper' equivalent
of the spreadsheet is shown below.

We e kly wages wee k 21
------ -----

normal hours = Lfo ov time rate = J.15

EMPLOY HOURS HOURS HOURS HOURLY GROSS
NAME TOTAL NORMAL OVTlME PAY PAY

13~ 4'0 4-0 0 4-.50 1 &'0.00

JCL-IN!e5 3Lf 3y- 0 Lt. 50 /53.00

~i.s 4"~ !fo g 5.00 270.00

H~ 4-3 lfo 3 If..50 2 0 3.6:4.

/~ 3g 3& 0 5.25 I CJCf. 5"0

flu
LJ 52 4--0 12 5.25 320.25

------- ------- ------- ------- ------- -------
TOTALS 2~5 23.2. 23 ;;. OJ .00 1326.37
------- ------- ------- ------- ------- ---- ---

In our example, wages are calculated on the basis of a 'normal' working week of
40 hours. Any hours worked in excess of 40 qualify for the over time rate, in this
case 1.75 times the basic rate of pay.

138

The top row of the sheet gives a title and the week number. The next row
specifies the number of hours in a normal working week along with the current
overtime rate.

The remainder of the sheet consists of a table with six columns. Column 1 lists
the names of the employees and column 2 lists the hours worked by each one.
Columns 3 and 4 split the hours worked into normal (40 or less) and overtime.
Column 5 lists the hourly rate of pay for each employee and the final column
shows the gross pay. At the foot of each column is a total so the figure at the
foot of column 6 shows the total wage bill for the firm.

Entering the spreadsheet

From the command screen, select mode 131 then clear the workspace using
NEW.

Press IESCAPE I to switch to the sheet screen.

The cursor should be in slot AI. This seems to be an appropriate slot for the title
so type:

WeekLylRETuRNI

Remember to press I ftt~ I if all your letters are appearing as capitals.

This spreadsheet uses a slot width of seven characters. Although you can enter
up to 239 characters in one slot, only the first seven will be displayed. The rest
of the title will have to go into Bl. Take the cursor into B1 and type:

wageslRETURNI

In the same way, enter the underline characters into slots A2 and B2.

Now enter week in El and 21 in F1

You could fit the whole of week 21 into one slot, but it would then be treated as
a label. As the same spreadsheet would probably be used for every other week
of the year, it is better to enter 21 as a value so that it is easier to change.

Now complete row 4 by entering:
norma L into A4
hours = into B4
40 into C4
ovtime into D4
rate = into E4
1.75 into F4

By now you will have noticed that the spacing of your entries leaves much to be
desired. Labels, such as week and norma L, are automatically ranged left
whereas values, like 40 and 1.75, are ranged right.

139

Put the cursor back into El and press

ISHIFTI+I t8 I (JUSTIFY LABEL)

The label in El moves from the left of the slot to the right. You may like to do
the same to slots AI , A2, A4 and D4 in order to improve the spacing.

To further improve the spacing you need to move the values in FI, C4 and F4
from the right to the left of their respective slots. For reasons which will become
clear later, the method for justifying values is different to that used for labels.

Place the cursor in one of the three slots mentioned above and press:

I t6 I (EDIT SLOT FORMAT)

At the top of the screen you will see:

Format?
FRM

Type: L!RETURNI

The number will now be ranged left. Repeat the procedure for the remaining
two slots.

The screen should now look something like this .

Now enter the column headings into columns A to F of rows 7 and 8. To
maintain the style of the written spreadsheet this is best done with caps lock
on.

140

Before entering the list of names in column A, press:

1 CTRL 1+1 (0 1 (AUTO ENTRY)

The letter R appears at the top left of the screen.
Press it again and the R changes to D.
Press it again and the D disappears .

R stands for Right and D stands for Down. What AUTO ENTRY does is to save
you the trouble of pressing the arrow keys every time you want to move on to
an adjacent slot. It is useful when entering a long row or column of items. Just
press IRETURNI and the cursor moves on to the next slot automatically.

To enter the list of names you need the D (Down) operation. You can carry on to
enter the lines in A15 and A17 and the label TOTALS in A16.

Whilst AUTO ENTRY is switched on, you can use it to enter the HOURS
TOTAL list in column B but for the moment do not make any entries below
B14.

Switch AUTO ENTRY off by pressing:

1 CTRL 1+1 (0 1 (AUTO ENTRY)

You will have noticed that the items in column B are not aligned with the
heading. As mentioned earlier, labels automatically range left whereas values
range right. Columns of figures are best left ranged right, so the solution is to
justify the labels that comprise the column heading.

Position the cursor in B7 and press:

1 SHIFT 1+1 (8 1 (JUSTIFY LABEL)

Repeat for the other half of the heading, in slot B8.

The spreadsheet will look neater if all the headings range right. Repeat the
JUSTIFY procedure for all the labels in rows 7 and 8.

Each item in row 15 is identicaL It would not be too much trouble to type the
label '- - - - - -' six times, but there is an easier way that is particularly useful
for large spreadsheets. Press:

1 (0 1 (REPLICATE)

The system responds with a prompt:

From - To?

Type:

A15 - B15F151RETuRNI

This replicates the contents of A15 into columns B to F of row 15. As you have

141

seen, the specification of a range, like B15F15, IS useful for a variety of
operations in ViewSheet.

Repeat this procedure to enter row 17.

Your spreadsheet should now look like this.

II SUT-117
CDlTEITS--------

I " .R . .. " ., B"",,,C,, " 0,,,,,,, [,, , ,,,,F,,.,,,, 6, ,,, ,, ,H,,.,, .,1
" " •• 1 j .. ," ... k 21
•..•. • 2 ------ ----
". ",]
"" ,,4 nor .. 1 hours' 41 oot,. "te' 1.75
"" .,5

"",,' " . ".7 Ell'LIY IIOURS HOORS HDURS IIOlll Y &RBSS
" " ,,8 MRI(mAL MllRIIIl IWTIIl PAY PRY
" " ,,' Sri thn 4i
"" .llb... l4
"" .lI l •• is 48
"".11 IIIInk 43
" . .. 13 I... 38
" " .14 Tgl" 52
"" .15 ------- ------- ------- ------- ------- ----- .-
" ... 16 TDTRlS
..... I~ ------- ------- ------- .------ -------
. .. ,,1'
..... 1'

Before continuing, it is important to distinguish between values that must be
entered directly, and those which ViewSheet can calculate from a fomula.
According to the rules outlined earlier, the HOURS NORMAL and HOURS
OVTIME values can be calculated from the HOURS TOTAL. Similarly, the
GROSS PAY will be calculated from values in the preceding columns.
Therefore the only remaining values to be entered directly are those in column
E, HOURLY PAY.

Enter the first of these, 4.50, into E9. A problem is immediately apparent.
Trailing zeros are ignored and you end up with the figure 4.5. For sums of
money, you need a slot format that maintains two decimal places whatever the
value. To do this, press:

I (6 I (EDIT SLOT FORMAT)

In response to:

Format?
FRM

Type: D2

This stands for two decimal places. Note that you can combine instructions for

142

editing slot formats by typing, for example, D2L which specifies two decimal
places and ranges left.

Try entering the remaining items in column E using AUTO ENTRY.
Remember to edit each slot format to two decimal places.

Formulae

You are now left with three empty columns and a blank TOTALS row along the
bottom of the table. The values in these positions will all be calculated by
ViewSheet. All that remains is to devise a suitable formula for each slot.

Begin with the formulae in the TOTALS row as these are the most
straighforward. To obtain a total for column B HOURS TOTAL, place the
cursor in BI6 and type:

89+810+811 +812+813+814IRETURNI

Almost immediately, the sum of the six numbers appears in BI6. Although this
method is perfectly acceptable for totaling fairly short lists of values, it is
clearly impractical for lengthy additions. A better way is to specify a range of
values, as shown earlier in the ACCOUNT spreadsheet. Leaving the cursor in
BI6, press:

1 SHIFT 1+1 f9 I (DELETE SLOT)

This erases the current contents of BI6. Now type:

898141 RETURNI

The result should be the sum ofthe values in all slots from B9 to BI4 inclusive.

You will need to specify ranges in a similar way for the other slots in row 16.
You can do this using replication even though each formula contains different
slot references. Press:

I fo I (REPLICATE)

The screen will show:

From - To?

Type: 816 - C16F161RETURNI

The screen will show:

R)eLative, N)o change?
Im1 814

Note that the slot reference B9 is highlighted. Your earlier use of replication
involved slot contents that were not formulae. That is, they did not include slot
references. This time, as you want to replicate a formula, ViewSheet offers you
the option of replicating each slot reference absolutely or relatively.

143

Absolute replication copies the exact slot contents to the specified range, just as
you did earlier when replicating a label. Relative replication will change B16 to
C16, D16, E16 and F16 in each successive slot. To select relative replication on
BH press R.

The screen will show:

R)eLative, N)o change?

Now you have the option of selecting absolute or relative replication for the slot
reference B14. Again, you do not want B14 to be copied exactly, but to change
to C14, D14, E14 and F14, so press R.

Immediately the row fills with figures . If you pass the cursor along you will see
in the CONTENTS= line at the top of the screen how the formula has been copied
with the slot reference updated each time.

Now try using replication to enter formulae in column D, HOURS OVTIME.
The overtime is calculated simply by subtracting the HOURS BASIC from the
HOURS TOTAL. So D9, for example will contain B9-C9. Type this formula into
D9 then use relative replication on both B9 and C9 in order to complete the
column.

A simple formula is not sufficient to complete column C, HOURS BASIC. This
value is calculated for each employee by looking at the HOURS TOTAL. if this
is 40 or less then HOURS BASIC will be the same figure. Ifit exceeds 40, then
HOURS BASIC will be 40. For the first employee, Ms Brittan , you could write
this as:

'If B9 is more than 40, enter 40. Otherwise enter B9.'

which, as a ViewSheet formula, becomes:

IFCB9>40,40,B9)

This is a very powerful spreadsheet facility that enables a condition (B9>40) to
dictate the value (40 or B9) to be given to a slot.

Enter the above formula into slot C9 and use replication to put corresponding
formulae into the rest of column C.

144

At this point, your spreadsheet should look like this:

VI sur-et
COIIUlS-IF '19141 Bt)

I •• R . •. I c 0 •• E. F •... •.. 6•• H 1
.... .. I II"U¥ .. gfS ... k 21
.. 2 ------ -----
...... 3
...... 4 .0, .. 1 hours' 41 ,,11 .. rat., 1.75
.... .. 5
.... .. ,
...... 7 E"LOY HOURS HOUIIS HOURS HOURLY GROSS
.. 8 Mill Tom MUL OUIlIl PHY PHY
...... I8"tl>. 4.-;J I 4.51
..... 11 li .. s]4 34 I 1.51
.. ... 11 L •• is 48 41 8 UI
.. .. . 12 ",ok 43 41] 4.51
..... 13 Too. 38 38 • 5.25
..... 14 hi" 52 4i 12 5.25
.. ... 15 ------- ------- ------- ------- ------- -------
..... U Toms 255 232 23 21 •
..... 17 ------- ------- ------- ------- ------- -------
.. .. . 11
.. ... I!

All that remains is to complete the final column, GROSS PAY. This value is
made up from two parts, basic pay and overtime pay. Taking Ms Brittan as an
example, gross pay could be calculated as follows:

basic pay
= HOURS BASIC x BASIC RATE
= 40 x £4.50
= £180

overtime pay
= HOURS OVTIME x BASIC RATE x OVTIME RATE
= 2 x £4_50 x 1.75
= £15.75

gross pay
= basic pay + overtime pay
= £195.75

Expressing this as a ViewSheet formula:

(C9*E9)+(09*E9*F4)

Enter this into F9 then replicate it into slots FIO to FI4. Note that F4 is the
overtime rate for all employees and as such should be copied exactly to each
slot. Therefore when you see:

R)eLative, N)o change?
ID)

145

you should press N to signify No change.

Your complete spreadsheet should look like this:

VA SLOTof'
comlTs-("'EIl' (0I'E"f4)

I 1 8 C D E f 6 H •.. !
. 1 lIt.kh .,," ... k 11
· 1 ------ ----
.... . . 3
. 4 .0, .. 1 hours' 41 outi .. rat., 1.75
...... 5
. 6
· 7 ElflOY HOURS HOURS HOURS HOURLY 6ROSS
· 8 l1li11 TOTRl MORllll OUTIII PRY PRY
.... . . , B,ittan 41 41 i UIWJ:JH
· 11 1> .. , 34 34 I UI 153.11
. 11 l •• i, 48 41 8 5.11 27i.ii
· 12 ""k 43 41 3 UI 113.61
... . . Il Toon 38 38 i 5.15 199.51
... .. 14 hi.. 51 41 11 5.15 321.25
..... 15 ------- ------- ------- ------- ------- -------
· 16 TOTAlS 155 131 13 19 1316.37
. 17 ------- ------- ------- ------- ------- --- ----
· 18
. 19

This may have seemed a long and complex process to produce what is a
relatively trivial spreadsheet. However, the principles involved are the same
whether your sheet caters for six employees or sixty. The methods and devices
that you have used in constructing the WAGES sheet will stand you in good
stead for creating more complex and useful spreadsheets.

As mentioned previously, spreadsheets are particularly useful for answering
questions of the type 'What if.. .. ?'. Below are four problems which you may like
to solve using the WAGES sheet. Although with the help of a spreadsheet they
might seem trivial, you can imagine the amount of calculation that might pe
involved if you were using the 'pen and paper ' equivalent shown on page 138!

1 Having completed this week's wages sheet you find that Mr Monk has
been fiddling his time sheet and should really be credited only 35 hours.
Edit your spreadsheet accordingly.

2 The company is considering increasing the overtime rate from 1.75 to
1.95. Naturally, the boss is concerned about the possible effect on the total
wage bill . What difference would it have made for week 21?

3 Another scheme under consideration is to cut the number of hours in a
normal working week from 40 to 38.

This problem points to a deficiency in the spreadsheet as it stands. Although
you entered 40 as a value in slot C4, all of the relevant formulae refer to the

146

constant 40 instead of the slot reference C4. If slot references are used in
formulae, the whole spreadsheet will be recalculated each time a single slot
value is altered. Therefore, if there is a choice, formulae should contain slot
references instead of just values.

Printing

Printing from ViewSheet is very like VIEW in that codes are sent to a printer
driver which controls the operation of the printer. There is a built-in driver for
straightforward printing, whereas to utilise more sophisticated features
available on some printers a driver generator is available separately.

Provided the system is correctly set up, printing the sheet that you have just
created is very easy. Switch to the command screen and type:

PRINTIRETURNI

The area of the sheet that is covered by the screen will be printed. In mode 3,
that normally includes everything from Al to 119 which, in this case, includes
your complete spreadsheet.

For printing anything outside the area from Al to 119, ViewSheet uses print
windows. A description of print windows is outside the scope of this guide and
users are referred to the ViewSheet User Guide.

Using spread sheets with VIEW
You can incorporate spreadsheets into VIEW files. This facility is useful for
creating documents that include tables.

To save your spreadsheet in a suitable format (called, say, MONEY) proceed as
follows.

[g] Type:

*SPOOL MONEylRETURNI

The screen will show:

RECORD then RETURN

Press RECORD on your tape recorder followed by IRETURNI, then type:

SCREENI RETURNI

The sheet is displayed on the screen as the file is created. Now type:

*SPOOL! RETURN I

147

Type:

*SPOOL MONEY! RETURN!
SCREEN !RETURN!

The sheet is displayed on the screen. Now type:

*SPOOLlRETURN!

The effect of this procedure is to save the top corner of the screen from Al to
119. For spreadsheets that extend outside this range, print windows must be
set and the necessary information can be found in the ViewSheet User Guide.

Once saved in this way, the file can be read into VIEW and subsequently edited
or incorporated into another document. Note that spreadsheet files created in
this way must be loaded using VIEW's READ command and not the LOAD
command.

Other features of ViewSheet
With your experience, albeit brief, of using ViewSheet, you will be able to
appreciate its power and recognise some potential applications. We have had to
omit many of the more advanced facilities that ViewSheet offers, some of which
are outlined below.

A summary of ViewSheet command screen commands is given in Appendix J .
but the ViewSheet User Guide should be consulted for full details oftheir use.

When using a large spreadsheet it is often convenient to display different
sections of the sheet on the screen simultaneously. For example, suppose you
were totalling a list of values in column A. If you were not sure how many items
the list would contain, you might put the total at the bottom of the column in
slot A255. However, if would be tedious to have to keep displaying different
parts of the sheet in order to refer to items in the list and the total in A255.

This problem may be overcome using ViewSheet's screen windows. A255 can
be displayed in a window at the foot of the screen whilst the list of values in
column A is scrolled independently.

Up to ten windows can be set up at the same time, each of which may be set to a
different width. This enables displays to be set up using wide slots for labels and
narrower ones for values.

As mentioned earlier, windows are also useful in printing. Different sections of
a sheet can be printed adjacently, or incorporated into a VIEW document.

ViewSheet provides a variety of functions for use in slot formulae. You have
already used one of them - the IF function. There are functions that can, for
example, give the maximum, minimum or average values for a specified range.

148

Some functions have counterparts in BBC BASIC, for example INT, LOG and
SIN.

A lookup table may be set up within a spreadsheet. ViewSheet will search
through a list of values until it locates a specified item. The corresponding value
in a second table will then be located and used as required. For example,
suppose the first list contained numeric stock codes and the second list, prices.
A code could be referenced within a slot elsewhere in the sheet as a result of
which the corresponding price would be displayed.

Another useful facility allows data to be displayed in the form of bar charts.
Within a specified section of the sheet, numbers are automatically represented
using lines of asterisks.

149

5. Filing Systems

What is a filing system?
Virtually every computer application (barring the most trivial) requires some
kind of access to an external storage medium, such as cassette tape or magnetic ·
disc (either connected directly to the computer or provided as part of a network
of computers). In the main, this is because the portion of the computer's
memory which can be used to hold programs and data (the RAM) is unable to
maintain its contents when the power is switched off. Also, in certain
circumstances, the RAM may not be large enough to hold both a large quantity
of data and the program which processes it. Clearly, if programs and data are
to be held outside the memory in this way, the user must be provided with a
convenient means of referring to them, in order to:

retrieve (LOAD) existing items;
access existing items (i.e. selectively retrieve parts of items without having
to load them in their entirety);
store (SAVE) new items.

The items are normally referred to as files and it is a filing system which
provides these, and many other facilities.

Standard Filing Systems
Your computer comes equipped with four standard filing systems:

the Cassette Filing System (CFS);
- the ROM Filing System (RFS);
- the Disc Filing System (DFS);
- the Advanced Disc Filing system (ADFS).

therefore enabling the computer to access files held on cassette tape, cartridge
ROM sockets, conventional flexible (floppy) discs, and even hard (Winchester)
discs. In addition, optional filing systems may be fitted to the machine enabling
it, for example, to act as a station in an Econet network.

Whenever the computer is switched on, or subjected to a hard or soft break
(I CTRL 1+1 BREAK I or I BREAK!), it automatically selects the filing system designated
by the contents of the CMOS RAM (see page 23). This becomes the current
filing system and it remains in force until you tell the MOS that you wish to use
a different system (using one of the commands described below). The filing
system selected on power-up may be changed by use of the Control Panel utility
(see page 23) or by means of the *CONFIGURE command which is fully
described in the Reference Manual.

150

It is important to realise that each filing system is , as far as is possible ,
compatible with all the others. This means that the command required to, say,
load a fil e into memory, is equally applicable to the Cassette Filing System, the
Disc (or Advanced Disc) Filing System and even the Advanced Network Filing
System. It is therefore extremely easy to carry out operations such as
transferring a file from one medium to another, merely by changing filing
systems once the file is resident in the computer's memory. However, the range
of available options increases with the sophistication of the storage medium
and, whilst all Cassette Filing System commands are applicable to the Disc
Filing System, the reverse is not necessarily true. Similarly, the Disc Filing
System commands are applicable to the Advanced Disc Filing System, which
itself contains a number of specialised commands. The ROM Filing System is
an exception to this general rule because of the read-only nature of the

, medium.

The BASIC Language, VIEW, ViewSheet and the Editor (see page 164)each
have their own built-in commands for communicating with the current filing
system (i.e. LOAD, SAVE, SCREEN etc.) and their purpose and effects are
described in the appropriate chapters. What follows in the remainder of this
chapter is a description of the way in which files are organised by each filing
system and mention of the operating system commands necessary to use the
filing system at its most elementary level. The complete range of commands is
summarised in Appendix E and full details can be found in the Reference
Manual.

The Cassette Filing System (CFS)
Selected by: *T APE I RETURN I

Description

The Cassette Filing System is the most basic, and hence the least sophisticated
of the available filing systems; the storage medium is standard audio recording
tape accessed via an ordinary domestic cassette tape recorder.

Files are stored on the tape in strict sequence, as a series of short blocks and
the Cassette Filing System makes no attempt to maintain a record of the files
stored on a particular cassette. This, and a great many other functions are left
to the user. For example, he or she must ensure that:

the correct tape is loaded into the recorder;
when a file is to be LOADed, the tape is positioned
(approximately) at the start of the required file;
when a file is to be SAVEd, the tape is positioned such that the new file does
not overwrite any existing files which might be needed at some later stage.
The user must even ensure that the file is actually recorded by depressing
the RECORD button on the recorder!

151

The solution to these problems is merely one of sensible cassette management,
i.e. ensuring that each cassette is adequately labelled with its contents and
approximate tape counter settings for both the start and end of each file.
However, the filing system itself provides what help it can, as described below.

When a file is to be LOADed, a search is made (from the current tape position)
for the beginning of the file with the corresponding name. The message:

Searching

is displayed together with the names of any files (or parts of files) which are
encountered. This information can often tell you whether you are in
approximately the correct position and 'Fast Forward' and 'Fast Rewind' may
be used to reposition the tape if necessary.

Once the start of the required file is located, the message:

Loading

is displayed together with the name of the file and a count of the blocks as they
are loaded. (Note that this count is in hexadecimal rather than conventional
decimal notation, such that the tenth block is displayed as 0A, the eleventh as
08, the fifteenth as 0F, the sixteenth as 10 and so on.) As a (very) rough guide,
each block takes approximately 2 seconds to load, with a gap of about half a
second's duration between each pair. A bleep is emitted from the speaker when
loading is complete and, if motor control is available, the cassette motor is
switched off automatically.

When a file is to be SA VEd, the filing system reminds the user to press the
correct buttons on the recorder by displaying the message:

RECORD then RETURN

Actual transmission of the content of the file does not start untillRETURNI has
been pressed - although the filing system will still have no means of knowing
whether the recorder is ready or, indeed, if a recorder is connected at all! As
with loading, the filing system displays the name of the file and a hexadecimal
count of the blocks as they are transmitted - a bleep indicates that the transfer
is complete.

The ROM Filing System (RFS)
Selected by: *ROMIRETuRNI

The ROM (Read-Only Memory) Filing System is provided for the purpose of
accessing files held in cartridge ROMs, which are inserted into the two special
sockets above the numeric keypad:

152

Either or both of the sockets may be occupied at any time although it is
advisable to switch the computer off when inserting or removing a cartridge.

The ROM Filing System provides similar facilities to the Cassette Filing
System - the obvious difference being the read-only nature of the storage
medium and the speed of access to files. A typical ROM Filing System cartridge
will contain one or more files which are accessed using ordinary commands; a
machine code game, for example, would be retrieved by means of a command
such as:

*RUN GAME I RETURN I

which causes the machine code program GAME to be loaded into memory and
executed - the similarity between the ROM Filing System and the Cassette
Filing System is reinforced by the brief appearance of the Sea rch i ng message.

Note. It is also possible to use either of the two cartridge ROM sockets as
extensions to the computer's existing Read-Only Memory although this use is
independent of the ROM Filing System. Owners of BBC Model B I B+
microcomputers, for example, may already possess a variety of ROM software,
packaged simply in a chip which is inserted directly into the printed circuit
board. Assuming that the original manufacturer followed the guidelines laid
down by Acorn these chips may be used with the new model by means of a
special User ROM cartridge which is available through Acorn registered
dealers.

The Disc Filing System
Selected by: *DISqRETURNI

The conventional Disc Filing System is supplied in order to provide
compatibility with previous BBC Microcomputers in which the storage medium

153

is the conventional 5.25" flexible (floppy) disc. On each disc, files are recorded
on concentric rings of specially-formatted magnetic material called tracks,
each of which is divided up into 10 sectors.

di sc cas ing

~ - - - _. - -~- -- =::::::-- - - - -- - - - -

ou termo st track

disc surf ace

sector (shown

common to
all track s)

10 sec tor s per tra ck

innermost track

Depending upon the type of disc unit in use, either 40 or 80 tracks will be
available - some disc units are said to be 'switchable' and can be set to read
discs in either format. The recording format used by the Disc Filing System
gives each surface of a 40-track disc a capacity of 102400 (lOOK) characters,
and each surface of an SO-track disc 204800 (200K) characters.

All discs must be appropriately formatted by the computer before they can be
used with the Disc Filing System and the necessary commands are described in
Appendix E.

The actual process of loading and saving files is carried out by read/write
heads which can be positioned over any of the available tracks on a particular
disc surface as it rotates and this mechanism is referred to as a drive. The
number of available drives is also determined by the type of disc unit:

One drive is provided by the simplest unit which is referred to (quite
logically) as a single-sided disc unit;

Two drives may be provided either by a double-sided disc unit (which
allows files to be stored on both surfaces of a single disc) or by a twin
single-sided disc unit (which allows files to be stored on one surface of either
of two separate discs);

154

,
Most sophisticated (and hence most expensive) are the twin double-sided
disc units which provide four drives by allowing files to be stored on both
surfaces of either of two separate discs.

Each drive is referred to by a number, which will be 0 when the Disc Filing
System is first selected and which may changed (if your disc unit has more than
one drive) by means of the command:

*DRIVE numberl RETURN I

The number sets the current drive and specifies the disc surface that will be
used in all subsequent disc transfers. It is possible to access a particular drive
without changing the current drive number by including a drive specification
in commands like LOAD and SAVE. For example, if PROG 1 is a BASIC
program stored on the disc surface corresponding to drive 2, the command:

CHAIN ":2_PROG1"IRETURNI

would load and run the program regardless of the current drive number. The
symbol indicates that a drive number is to follow and the _ separates the drive
number from the name of the file .

The fact that the read/write heads on a particular drive may be positioned over
any of the available tracks, coupled with the fact that the disc rotates, means
that it is possible to access a particular file merely by waiting the relatively
short time for the appropriate sector(s) to pass under the heads. This is in stark
contrast to the strictly serial access provided by cassette tape storage.

The disc catalogue

The names and information relating to the position of each file on the current
drive are held in a catalogue stored on the disc itself and an empty catalogue is
created by the formatting procedure mentioned above. The catalogue may
contain a maximum of 31 entries and filenames may be up to 7 characters in
length.

When a file is SA VEd, the Disc Filing System first examines the catalogue to
determine a suitable free area on the current drive. The name of the file is then
entered into the catalogue together with its position and the file itself is written
to the designated area. After several such operations, the arrangement on a
particular disc surface might be like that shown in the diagram overleaf:

155

Disc catalogue (names of files)

LETTER

MEMO

PROG1

PROG2

SAMPLE

~

Remainder of disc (content of files)

MEMO

PROG1 PROG2

When a file is loaded, the filing system first consults the catalogue to determine
whether the file exists on the current drive . Ifit does, the filing system uses the
remainder of the information in the corresponding catalogue entry to locate
and retrieve the contents of the file.

Files may be deleted, renamed or copied to a different drive using the
commands described in Appendix E.

Directories

The diagram in the previous section shows the catalogue in its simplest form -
it is also possible to group files together into units called directories which are
identified by a single character (normally an upper case letter). You might, for
example, wish to group all your BASIC programs together in directory Band
all your word-processed documents in directory Wand this can be achieved in
one of two ways:

instruct the filing system to select a particular directory letter and to apply it
to all subsequent LOAD and SAVE operations. The command:

*DIR di rectory._LetterIRETuRNI

is provided for this purpose. The letter chosen becomes the current directory.

When first selected, the Disc Filing System automatically assigns directory $

156

as the current directory; the files shown in the diagram above would
therefore be part of directory $ (which happens, in this case, to contain all the
entries in the catalogue).

- incorporate a directory specification in all LOAD and SAVE commands, for
example:

SAVE"B.PROG1"IRETuRNI (note the quotes required by BASIC's LOAD and
SA VE commands)

LOAD W.LETTERIRETuRNI

The . is used to separate the directory letter from the file name. The absence
of a directory specification causes the filing system to use the current
directory.

It is, of course, possible to include both a drive and directory specification in a
single command, such as:

SAVE :2.W.MEMOIRETURNI

The diagram below shows a possible Disc Filing System catalogue / directory
structure for one drive - note that the use of different directories does not alter
the maximum of 31 files per catalogue.

Disc catalogue (names of files)

$

LETTER

MEMO

PROG1

PROG2

SAMPLE

----------~

S

FIGURE

BUDGET

W

MEMO

STD1

DOCT

Remainder of disc (content of files)

$.MEMO

$.PROG 1 $.PROG2

B

PICT

DIARY

B.PIC

S.BUDGET

W.MEMO

157

Libraries

The discussion of the Control Panel on page 23 makes mention of the fact that
machine code programs are executed by means of the command:

*programL-nameIRETuRNI

which (on the assumption that programL-name is not a recognised operating
system command) causes the current filing system to load and run the
corresponding program. Such commands will cause the output of message such
as:

Bad command

or

FiLe not found

if the program cannot be located in the catalogue for the current drive /
directory. Whilst it is perfectly possible to change drive / directory or even to
issue a command such as:

*: 2. U. UTI LITYI RETURNI

(which explicitly states both drive and directory) the Disc Filing System allows
you to specify a library which will always be referenced if a * command fails to
find the file in the current drive / directory. A library is specified by means of
the command:

*LIB dri ve---Speci f i cati on di rectory---speci f i cati onl RETURNI

If only one of either the drive or directory specifications is given, the current
setting of the other value is assumed.

The library facility is of most use with multiple drives, when it is possible to use
choose one drive for general use and a different drive for utilities, which will
always be directly accessible if the appropriate *LIB command is given at the
start of a session.

Displaying a disc catalogue

A special command is provided in order to display a disc catalogue and its
format is:

*CA T d r i ve....J1umbe r I RETURN I

If the drive number is omitted, the current drive is assumed.

The Advanced Disc Filing System
Selected by: *ADFSIRETURNI

. The Advanced Disc Filing System IS an alternative to the traditional Disc

158

Filing System; the term 'advanced' referring to its capabilities and performance
rather than its suitability for new users of disc systems.

In essence, the Advanced Disc Filing System provides the same means of
controlling the operation of one or more disc drives as the Disc Filing System
but, in addition to a number of additional commands, it provides:

a recording f-ormat which gives each surface of a 40-track disc a capacity of
163840 (160K) characters, and each surface of an 80-track disc a capacity of
327680 (320K) characters;
a hierarchical directory structure, which overcomes the limit of 31 files per
disc surface in the DFS, and which therefore means that ADFS can make
optimum use of alternative types of disc unit, for example Winchester hard
discs;
the use (if possible) of both sides of a single disc as one entity;
faster access to certain types of file (particularly in a network environment).

5.25" and 3.5" discs must be formatted before they can be used by the Advanced
Disc Filing System and the necessary commands are described in Appendix E.

One of the major limitations of the Disc Filing System is the maximum of 31
filenames which can be held in the catalogue stored on each disc surface. This
means that a disc may become 'full' merely because there is insufficient room to
enter further filenames and not because there is insufficent room to
accommodate the files themselves. The Advanced Disc Filing System
overcomes this problem by means of the heirarchical directory structure which
enables any number of files to be stored on a single disc, subject only to the
amount of available disc space (and sensible use of the structure by the user).

The basic unit of storage (as with the Disc Filing System) is a file, which is
identified by a name of up to 10 (rather than 7) characters. Files are grouped
into directories, which in the case of The Advanced Disc Filing System, may
also have names of up to 10 characters (rather than a single letter). However,
whereas grouping files together into directories is merely a convenience under
the Disc Filing System, it becomes both a necessity and a positive advantage
under the Advanced Disc Filing System, as described below.

The directory structure

The process offormatting a disc for use under the Advanced Disc Filing System
creates a blank copy of what is known as the root directory which, for
compatibility with the Disc Filing System, has the (unalterable) name $. The
root directory may contain up to 47 entries, each of which is either:

a simple file;
a reference to a subordinate directory, which itself may contain both files and
further subordinate directories.

159

This idea is illustrated in the following diagram, which shows a typical, simple,
directory structure and which is described below:

$

CONVERT BASIC SOURCES VIEW

MYPROG1 GAMES MYPROG2 MEMO LETTER

ZAPPER SPLATT ZONK

The root directory contains one file (CONVERT) and three subordinate
directory names (BASIC, SOURCES and VIEW);

- Directory BASIC contains two files (MYPROG 1 and MYPROG2) and one
further subordinate directory (GAMES). GAMES contains three files
(ZAPPER, SPLATT and ZONK);

- Directory SOURCES is empty;
- Directory VIEW contains two files (MEMO and LETTER).

Referring to files

When the Advanced Disc Filing System is first selected it will normally read
the contents of the root directory from the disc in drive O. The root directory
becomes the current directory and you may access any of the files which it
contains (i.e. CONVERT in the example above), for example:

CHA! N" CONVERT" I RETURN I

160

If you attempt to, say, LOAD or SAVE the name of a subordinate directory, the
filing system will respond with a message such as:

Is a directory

because the name is merely a pointer to the directory itself and not to the files it
contains.

As with the Disc Filing System, access to files in other directories may be made
in one of two ways:

use the *DIR command to make the directory containing the required file the
current directory (which also gives direct access to any other files in that
directory);

include a directory specification in the command itself, (leaving the current
directory unchanged).

For example, to LOAD file MYPROGI from directory BASIC, you could type:

*D I R BAS I Cl RETURN 1
LOAD"MYPROG 1" 1 RETURN 1

which leaves BASIC as the current directory, or type:

LOAD BAS I C. MYPROG 11 RETURN 1

which leaves the current directory unchanged (i.e . as directory $l.

Similarly, ZONK (if it is a BASIC program) could be executed by any of the
command sequences given below:

*DIR BASIC.GAMESIRETURNI
CHAIN" ZONK"I RETURNI

which leaves directory GAMES as the current directory;

*DIR BASIC!RETURNI
CHAIN"GAMES. ZONK" '-1 R-ET-U-RN--'I

which leaves BASIC as the current directory;

CHAIN"BASIC. GAMES. ZONKI RETURNI

which leaves the root as the current directory.

Sequences of directory names, each separated by a . are sometimes referred to
as pathnames.

A pathname may start only from the current directory or from the root
directory - if the current directory is, say, BASIC, file MEMO may be accessed
only by the pathname:

$.VIEW.MEMO

161

Similarly, if VIEW is the current directory, file ZAPPER may be accessed only
by means of the pathname:

$.BASIC.GAMES.ZAPPER

There are, however, two exceptions to this general rule - the first being the use
of the *BACK command; the second being the use of the A symbol. In addition
to 'remembering' the current directory, the Advanced Disc Filing System also
remembers the last directory accessed and the command:

*BACKIRETuRNI

makes the previously selected directory current, i.e. it provides a convenient
means of switching between two commonly-used directories.

The A symbol, when used as part of a pathname, means parent directory (i.e.
the directory which contains the current directory). Thus, if GAMES is the
current directory, file NEWPROG could be stored in directory BASIC by means
of the command:

SAVE "~.NEWPROG"IRETuRNI

instead of using the full pathname:

SAVE $.BASIC.NEWPROGIRETuRNI

The symbol @ is used to denote the current directory and it may be used
(together with a number of other, special-purpose symbols) with many of the
commands described in Appendix E.

If a file is resident on any drive other than the current drive, it may be accessed
by including a drive specification at the start of the necessary pathname, for
example:

*DIR : 2. BACKUP. VIEWI RETURN I
which makes directory VIEW, within directory BACKUP (itself in the root
directory) on drive number 2 the current directory. A command containing a
drive specification only, such as:

*DIR : 11RETURNI

causes the Advanced Disc Filing System to load the root directory from the
designated drive; it is therefore similar in effect to the Disc Filing System's
*DRIVE command.

Creating subordinate directories

Whereas SAVE (or its equivalent) is used to store files in the current directory,
the *CDIR command is provided in order to allow the creation of a new
subdirectory in the current directory. Thus, directory SOURCES could be

162

divided into two subdirectories, PASCAL and COMAL, by means of the
following command sequence:

*DIR SOURCESIRETURNI
*CDIR PASCALlRETURNI
*CDIR COMALlRETURNI

(Sets current directory)
(Creates subdirectory PASCAL)
(Creates subdirectory COMAL)

In each case, the effect is to create a new (empty) directory with the
corresponding name.

Libraries

Under the Advanced Disc Filing System (as with the Disc Filing System), it is
possible to specify a library to contain any frequently-used utility programs.
This may be assigned explicitly using the *LIB command (as described on page
215)or implicitly by ensuring that the library directory begins with the
characters LIB and that it is an entry in the root directory.

Displaying a directory catalogue

Under the Disc Filing System, the *CAT command is used to display the
catalogue for the current (or a designated) drive. Under the Advanced Disc
Filing System, ';'CAT is used to display the catalogue for the current (or a
designated) directory, and it may therefore be followed by a pathname. Thus:

*CA T I RETURN I

*CAT $.BASIClRETuRNI

*CAT :2.BACKUP. VIEWIRETuRNI

displays the catalogue of the current
directory.

displays the catalogue of directory
BASIC (regardless of the current
directory).

displays the catalogue of directory
VIEW on drive 2 (VIEW being
subordinate to BACKUP in the root
directory).

163

6. The Editor

This chapter describes the Editor and shows, briefly, how it can be used to help
in the preparation of both text and programs.

In essence, the Editor offers a similar range of functions to those available in
the VIEW word processor in that it provides a large workspace into which text
may be loaded, entered, edited and subsequently saved. The major difference ,
however, is that the Editor does not carry out on-screen formatting and it is
therefore recommended that VIEW is used for all conventional word processing
tasks (i.e. the production of letters, memos, reports etc.) and that the Editor is
used primarily for creating and editing programs. It is mainly the latter use
which is described here, with specific reference to the BASIC language. The
Reference Manual contains a great deal of further information about the
Editor, including a discussion of the powerful formatting commands which can
be used in the generation of bulk text for display or printing.

Before you can learn how to use the Editor, it is important to learn the
distinction between a text file and a file containing a BASIC program because it
affects both the way in which you select the Editor and what you will see while
it is in use.

A text file is merely a sequence of characters, each stored as an ASCII code.
It has no special format except that individual lines are separated from one
another by means of a carriage return character (ASCII 13) and the end of
the whole file is indicated by means of special end allile marker.

A text file may also contain ASCII control codes, (i.e. ASCII code which does
not correspond to one of the normal, printable characters).

A BASIC program file is also a sequence of characters but the important
difference is that it has a special format:

the file begins with a carriage return character (ASCII 13);
each program line begins with a line number followed by a count of the
number of characters the line contains;
within each line, all keywords (PRINT, INPUT, REPEAT etc.) are
represented by special tokens which are merely internal codes and which
help to reduce the overall length of a program when it is stored or loaded
into memory;
each line is terminated by a carriage return character.

The Editor has no way of knowing which type of file is being edited and it
therefore treats every file as a sequence of characters, which means that text

164

fil et; may be loaded directly into the Editor and, consequently, sav€d without
any modification. Clearly, however, loading a BASIC program file into the
Editor directly will produce a rather peculiar effect, because the Editor will
attempt to display a single character corresponding to items such as the line
number, the character count and each keyword token. This dificulty is
overcome using the BASIC language's EDIT command, as described below.

Selecting the Editor
There are several ways of selecting the Editor and the choice of method will
depend upon the type of file and the purpose of the editing session:

If you intend to create either a text file or a BASIC program file from scratch,
The Editor is selected by means of the command:

*ED IT I RETURN I

This has the effect of clearing the Editor's workspace ready for subsequent
input in the form of pure text or BASIC program statements.

Text files may be loaded (and even inserted) into the workspace using the
function key commands described below.

If you intend to edit an existing text file, you may use the procedure
mentioned above or, alternatively, use the command:

*EDIT textfi Lename[RETuRNI

which selects the Editor and automatically loads the named text file into the
workspace.

If you intend to edit an existing BASIC program file , you must first select
BASIC and load the required program:

*BAS I Cl RETURN I
LOAD"prog ramf i Lename" I RETURN I

and then select the Editor by means of the BASIC language's own EDIT
command, i.e:

ED IT I RETURN I

This command merely LISTs the current program, not to the screen, but
directly to the Editor's workspace - an action which effectively converts the
program into a text file .

The reverse operation, that is reconverting the contents of the workspace
into BASIC's internal format is achieved by means of another of the Editor's
function key commands, as described below.

165

The standard EDIT Screen

Switch the computer on, or execute a hard break, then select the Editor using
the *EDIT command. Almost immediately, the screen will clear and be replaced.
with the EDIT screen , which is made up of four components:

(1) The function key legends briefly describe the effect ofthe ten function keys,
the bottom row being the effect if the corresponding function key is
depressed on its own; the top row being the effect if the corresponding key is
pressed in conjunction with IstilFTI. Two additional functions (not shown on
the screen) are provided by 1 CTRL 1+1 (6 1 and 1 CTRL 1+1 (7 I.

(2) The area below the function key legends is reserved for a brief description
of the effect of various keys and, on depression of one of the function keys
(with or without 1 SHIFT I), a summary of the effect of the selected command.

(3) The large, currently empty area in the lower half of the screen is the text
display / entry area which, as in VIEW, provides a window containing a
segment of the text in the workspace. As you would expect by now, you are
able to alter the content of the text displayed in the window and move it in
order to examine other segments of the text.

166

The black asterisk in the white rectangle is the end of text marker, and, if
you look carefully, you will see the cursor flashing underneath it. This is
because the workspace is empty and the current cursor position therefore
corresponds with the end of the text.

(4) The small segment at the bottom of the EDIT screen is used to display
information about the Editor's current status, messages and prompts for
replies from the user.

For fairly obvious reasons, the display format described above is referred to as
the Editor's descriptive mode and it operates in screen mode 128, thereby
giving you the maximum available workspace size.

Other display modes
Other display modes may be selected by means oflSHIFTI+1 (5 1 (SET MODE),
which produces the prompt:

New mode ?

at the bottom of the screen.

Press I SHIFT 1+1 (5 I (SET MODE) and then K in response to the prompt. You
have now selected keyword mode in which the area of the standard screen
reserved for the key and command summaries is no longer present - the
additional space being taken up by a larger text display / entry area.

Press ISHIFTI+I (5 J (SET MODE) again but, in this case respond to the prompt
with 7 1 RETURN I. You have now selected the mode 7 Edit screen in which, as you
can see, only the text entry / display area and the status line appear. In fact,
any of modes 0, 1, 3,4,6 or 7 may be selected and they produce a display with
the normal characteristics of the selected mode. Note, however, that despite the
use of mode numbers in the range ° to 7, the Editor always selects the
corresponding shadow screen mode, in order to give the maximum workspace
SIze.

Whilst this last type of Edit screen is less informative that either of descriptive
or keyword modes, it does have the advantage of providing the largest possible
number of lines in the edit window and most experienced Editor users use
either the mode ° or mode 3 screen display in conjunction with the keyboard
insert supplied with the computer. However, six pages of the Welcome Guide
hardly puts you in the experienced user category and you should reselect
descriptive mode (using ISHIFTJ + I (5 J followed by D IRETURNI) before continuing
with this section.

Note: the Editor display mode is one of the items stored by the CMOS RAM and
when you next select the Editor (regardless of whether the computer has been
switched off in between) it will automatically reselect the display mode you
used last.

167

Entering text in the workspace
Try typing in the first two sentences from this paragraph, pressing IRETURNI at
the end of each sentence and watch the effect on the screen. Each time a key is
depressed, the corresponding character is displayed and the cursor (together
with the end of text marker) moves one position to the right. At the end of each
line, the cursor and marker move to the beginning of the next line and, if you
were to continue typing sufficient text to fill the current window, all preceding
lines would be scrolled up to make space for the new line, just as in VIEW.

Now press ISHIFTI+I fa 1 (DISPLAY RETURNS) and the position of each
depression of I RETURN I will be shown as a letter M reversed out of a white block.
We shall see the usefulness of this feature later in the chapter.

Now use the cursor keys to reposition the cursor under a character anywhere in
the text you have just typed (noting that the position of the end of text marker
remains unchanged. If you now type any characters, you will see that
everything to the right of the cursor on the same line and all characters on
subsequent lines down to the next return character, is moved along to
accommodate the new characters. This effect is produced because the Editor
always starts in what is referred to as Insert mode, as indicated by the word
Insert at the bottom of the screen.

Now press 1 SHIFT 1+1 " 1 (INSERT/OVER). This changes the word to Over and
selects Overtype mode, in which a new character replaces any character in
the current cursor position. ISHIFTI +I " 1 acts as a toggle between insert and
overtype modes. You might like to see the effect by repositioning the cursor and
typing some further characters.

Further information about the use of the two different text entry modes is
given in the next section but, with your rudimentary knowledge of the VIEW
word processor, you should be able to understand the following features , which
are unaffected by the choice of text entry mode:

1 SHIFT 1 and 1 CTRL i may be used in conjunction with the four cursor control
keys:
1 SHIFT 1+ i moves the text display up one 'screenful';
1 SHIFT 1+ t moves the text display down one 'screenful';
1 SHIFT 1+ <- moves the cursor to the start of the previous word in the

workspace;
1 SHIFT 1+-'> moves the cursor to the start of the next word in the workspace;
[CJRLl+ i moves the cursor to the start of the text;
1 CTRL 1+ tmoves the cursor to the end of the text (i.e. so that it coincides with

the end of text marker);
1 CTRL 1+ <-ffioves the cursor to start of the current line;
1 CTRL I+->Illoves the cursor to the end of the current line.

168

I TAB I may be used to move the cursor in one of two different modes
referred to as TAB below words and TAB columns of 8. The choice of TAB
mode i.s made by pressing ISHIFTI+I TAB I which displays the current TAB mode
and toggles between the two.

TAB below words causes the cursor to be positioned immediately below the
first character on the previous line, thereby providing a convenient means of
producing sensibly indented program listings (such as provided by BASIC's
LlSTO commmand).

TAB columns of 8 ca uses the cursor to be moved across the screen in steps of 8
character positions. Note that the effect is cyclic, i.e. movement off the right of
a particular line brings the cursor back on the left of the same line.

The effect of pressing other keys, such as I RETURN!, I COpy I and IDELETEI IS

determined by the choice of text entry mode, as described below.

An example of text entry in insert mode

If necessary, reselect insert mode (using ISHIFTI+I fl D and then clear the
Editor's workspace by pressing ISHIFTI+I f9 1 (DELETE TEXT) . Note that you
must confirm your intention by pressing any other key. Leave, or reselect the
DISPLAY RETURNS option (using ISHIFTI+I fa I.

Now type in the short, and somewhat uninspiring BASIC program below,
pressing I RETURN I at the end of each line. Note that it contains a few (l) deliberate
mistakes which we shall use to illustrate the effect of some special keys.

10 REM Noddy's program (with apoLog ies to A A Mi Lne)
20 INPUT "What is your name "name$
30 PRINT '''HELLO "name$", how oLd are you ?";40 INPUT age%
50 PRINT '''Did you know that you are ";ABS(age%-5);
60 IF age%>5 THEN PRINT "oLder"; ELSE PRINT "YOUNGER";
70 PRINT "than Big Nose ?"

Clearly, if the program is indeed Noddy's work, the reference to A A Milne in
line 10 is incorrect and needs to be replaced by Enid Blyton . This change can be
achieved in a number of ways, the most obvious being to use IDELETEI. In Insert
mode, the DELETE key removes the character immediately to the left of the
current cursor position, closing up any remaining characters down to the next
return character. We can therefore achieve the necessary deletion by
positioning the cursor under the) in line 10 and pressing IDELETEI the appropriate
number of times. The fact that we are in insert mode means that the characters
Enid Blyton may simply be typed once the erroneous characters have been
deleted, the) and the return character will move across automatically.

Line 30 also contains a mistake, in that it also contains line 40 (without an
intervening carriage return). This mistake can be simply corrected by placing

169

the cursor on the 4 and pressing IRETURNI, but watch the effect carefully - the
return symbol is inserted at the current cursor position but the very fact that it
is a return symbol causes the remainder of the line to be carried over to the
start of a new line. We shall see later that the effect of I RETURN I in overtype mode
is rather different.

Note that in insert mode, it is possible to join two lines together (i.e. delete the
separating return character) by position the cursor at the start of the second of
the two lines and pressing IDELETEI.

Line 50 has the characters " yea rs "; missing from the end of the PRINT
statement and these can merely be inserted by pressing the appropriate keys
once the cursor has been positioned over the return symbol.

The appearance of the output from the program would probably be improved if
the characters YOUNGER were replaced by younger and this change could be
made using the IDELETEI procedure described above. However, the occurence of a
second mistake of this type gives us the opportunity to examine the effect of
I COpy I which, somewhat surprisingly, actually deletes characters, but to the
right of the current cursor position. The deletion can therefore be made by
positioning the cursor under the " character preceding the letter Y and
pressing 1 COpy 1 to delete the incorrect characters. Once again, the required
characters may merely be typed in order to achieve the correction.

The final mistake (unless you introduced some more of your own) is the
reference to Big Nose rather than Big Ears. Either of the two deletion and
replacement techniques could be used again in this case, but take the
opportunity to see the effect of another function key command 1'5 1

(GLOBAL REPLACE).

If you press 1 '5 1 the prompt:

GLobaL repLace:

will appear at the bottom of the screen and you can then specify both a target
string and a replace string, separated by a / character. Our simple change may
be achieved merely by typing:

Nose/EarsLi~

and the Editor will confirm that,in this case, it has found 1 such target string
and replaced it with the replace string. However, one of the most powerful
features of the Editor is the sophistication of its search and replace functions
(I ,. I (FIND STRING) and I '5 1 (GLOBAL REPLACE», an indication of
which can be gleaned from the brief description produced in response to your
depression of 1 '5 I. Further information on this somewhat advanced editing
technique can be found in the Reference Manual.

Remember that the content of the Editor's workspace is merely a sequence of

170

text which happens, in this case, to contain the line numbers, keywords and
other symbols which make it obey the rules of the BASIC language. Ifthe file is
saved (using 1 '3 1 (SAVE FILE», it will be saved as a text file and any
subseq uent attempt to LOAD it in BASIC will produce a Bad program
message. If you wish to verify that Noddy's masterpiece actually works, you
must supply the content of the Editor's workspace to BASIC usmg
ISHIFTI+I '4 1 (RETURN LANGUAGE), which produces the prompt:

Language?

At this point you should type BASIClRETURNI and, after a momentary delay while
the necessary conversion takes place, the screen will clear and be replaced by
familar > prompt from the BASIC language. You may, of course, RUN or LIST
the program and possibly make some minor alterations using the normal
cursor editing functions.

To SAVE the program as a BASIC program file you must give an appropriate
SA VE command whilst still in the BASIC system but you may return the the
Editor at any time merely by typing:

EDITI RETURN I

An example of text entry in overtype mode

Insert mode is the most commonly used of the two text entry modes but it is
instructive to repeat the same sequence as above in overtype mode in order to
see the differences between the two. In the main, these centre upon the effect of
the I RETURN I, IDELETEI and 1 COpy 1 keys.

Clear the Editor's workspace and retype the sample program on page 169,
including the errors. Ensure also that the DISPLA Y RETURNS option is ON
and then select overtype mode (using 1 SHIFT 1+1 " D.

To change A A Milne to Enid Blyton in insert mode, we positioned the cursor
under the) character and made several depressions of IDELETEI. Try this
technique again in overtype mode and watch the effect. The first difference is
that the characters to the right of the cursor are not closed up as each character
is deleted. The second difference is that when you type the new characters to
correct the error, you 'run out of space' after Enid BLyt. In this case, the
simplest solution is to continue typing the characters on) , replacing the
existing) . Notice, however, that while the) symbol is overtyped, the return
symbol obligingly moves to the right for each remaining character depression.
This is because its replacement would have the effect of removing the separator
between two lines and the Editor would then have to make some judgement on
the content of the unused character positions beyond the end of the new text.
Clearly, the more sensible approach is that adopted, which considers any text
immediately before a return to be an extension to the current line. The same
argument is applied to any attempt to delete a return character.

171

If the mistake had been nearer the beginning of the line the technique above
would mean retyping almost the whole line and a better approach would be to
switch to insert mode (possibly temporarily) in order to add the necessary
characters.

Now try the technique for splitting the two lines; line 40 steadfastly refuses to
budge and depression OflRETURNI merely repositions the cursor at the start ofthe
next line. This is because overtype mode considers IRETURNI to be just that, an
instruction to return the cursor to the start of the next line and the only
instance when a return character is inserted into the workspace is if the cursor
coincides with the end of text marker, i.e . when a completely new line is
created. The two lines may therefore be separated only by switching back to
Insert mode.

The missing characters in line 50 may merely typed in after positioning the
cursor over the return character, as in the example above.

Replacing YOUNGER with younger is a relatively straightforward task as both
strings are the same length but, once again, it is useful to see the effect of the
I COpy I key in Overtype mode. If I COpy I is pressed with the cursor under the "
character preceding Y, it is the" which disappears, and not the Y (as in Insert
mode). Furthermore, you may hold your finger down on I copy I for as long as you
like because the cursor does not move. In other words, in Overtype mode, I COpy I
has the effect of deleting the character curently under the cursor and it is
therefore foolish to allow repeated deletion in one direction or the other.

I f4 I (FIND STRING) and I f5 I (GLOBAL REPLACE) operate identically in
both Insert and Overtype modes.

Block operations

If you examine the function key legend at the top of the Descriptive mode
display (or, indeed, the Editor keyboard insert) you will find several references
to marks which are the basis of all block operations within the Editor and which
are briefly described below. It must be said, however, that block operations are
more appropriate to conventional text editing rather than the editing of BASIC
programs .

The display at the bottom of the screen always shows the current number of
marks (initially 0) and a mark may be inserted at the current cursor position by
pressing I f6 I (MARK PLACE) .

Deletion of a block is achieved by positioning one mark over either the start or
the end of the block to be deleted and using the cursor itself to identify the other
end of the block. The actual deletion is carried out using ISHIFTI+I f8 I
(MARKED DELETE).

172

In order to either move or copy a block of text, both the start and end of the
required block must be marked - the cursor is used to indicate the destination
position. Blocks are moved using ISHIFTI+I '7 I (MARKED MOVE) and copied
using I f7 1 (MARKED COPY). Movement (and deletion) of a block removes
the current markers, but the copy operation does not, thereby enabling
multiple copies of a particular block to be made if required.

Scroll margins

If you examine the function key legend in either descriptive or keyword mode
(or, indeed, the keyboard insert) you will see that I SHIFT 1+1 '3 1 represents
CLEAR MARGINS. In the context of the Editor, the margins refer not to the
width of the text (as in VIEW) but to the points at which the content of the
screen begins to scroll (i .e. move up or down one line, thereby bringing a new
line onto the screen). Unless you specify otherwise, the Editor begins scrolling
whenever the cursor reaches the fifth line from the top or bottom of the current
text display / entry area - the idea being to enable you to see the context of the
line you are editing.

1 SHIFT 1+1 '3 1 (CLEAR MARGINS) sets the top and bottom scroll margins to the
top and bottom lines of the text entry / display area respectively. However,
either the top or the bottom scroll margin may be reset by using 1 SHIFT 1+ 1 '6 I
and ISHIFTI+I '7 I respectively - the line chosen being that containing the
cursor at the time of the function key depression. Thus, by setting the top and
bottom scroll margins to adjacent lines, it is possible to make the whole screen
scroll whenever the cursor is moved to another line.

173

7. The Terminal Emulator

Preceding chapters have described the BASIC language, the VIEW word
processor, ViewSheet and the System Editor - all examples of applications
software designed to make your computer a powerful, general-purpose tool.
This chapter makes brief mention of the remaining item of standard
applications software - the Terminal Emulator - which provides the facilities
necessary to use your computer as either a local or a remote terminal to other
computer systems. A full description is beyond the scope of this guide and users
wishing to make use of the Terminal Emulator should consult the appropriate
chapter in the Reference Manual.

In essence, the Terminal Emulator is a machine code program in ROM which,
when called by the command:

*TERMINALI RETURN I

controls the transmission and reception of data between the host computer
system and your microcomputer; all transmission takes place via the RS423
serial interface. The computer may be connected directly to a local system;
connection to a remote system requires the use of a suitable modem or acoustic
coupler which is itself connected to the host system via telephone lines (or a
dedicated data network). Space for an internal modem has been left inside the
computer's case.

174

8. Expanding the System

This section covers expansions to the basic system, both in the form of
peripherals (i.e disc units, printers etc.) and in the form of additional, so-called
co-processors. The aim here is to provide basic information - it is important to
read and follow any additional instructions provided with any expansion unit.

The illustrations below show the various sockets on the back and front
underside of the computer.

(ECONET) ANALOGUE

AUDIO OUT RS423
CASSETIE

RGB UHF
COMPVIDEO

ON/OFF SWITCH

AUXILIARY
POWER
OUTPUT

DISC
DRIVE PRINTER

USER
PORT

1 MHz
BUS TUBE

\

'" \

~ 0 @ ~~~~~~I~~~~~~~~~~ ~ ~~~~~~~~~ ~~~~~~~~~~~~ @ 0 @/
0 0

~~~~~~~ I~ ~ R o\~ \ = ~ ~,O' ~ =¥ /1J( :: ~ 

~~ ~~~ ~~~~~~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~ 
~ ~ 0 0 0 

@ @ 

~~~~~~~~~~~~~~~~~~~~~ @ @ 
0 •

1 it)~

~~~~~~~~~~~~~~~~~~~ 1 I! ~~ , ,. )~ 
1 " ;~ 
1 It ~~ 1 It 'co 
1 11 ;~ 
1 !I :~ 1 Ii 1 '----

1 iI 1 =@, 1 @ c::::::J i 1 0 0 = @~ = @ 

175 



Connecting a colour monitor 
Whils t the use of a n ordinary domestic colour t elevision is adequate for many 
users, those with specialist requirements, such as a high volume of 
word-processing (see note below ), or extensive use of colour gr aphics, wiU 
be ne fit from the addition of a colour (RGE) monitor. (RGB stands for 
Red-Green-Blue , the three basic colours which, in conjunction with the normal 
black screen background, provide the full range of eight basic and eight 
flashing colours.) 

Colour monitors provide better definition and have a further positive benefit -
they release the household television for use by the remainder of the family! 

Connection to the computer is by means of a 6-pin DIN lead which is plugged 
into the socket m arked 'RGB' on the back of the computer. 

No special commands are required to drive a monitor although, as with a 
domestic television , you may also need to use the Control Panel utility to reset 
the vertical screen alignment (see page 24). 

Note 

Serious users of VIEW or ViewSheet may also consider the connection of a 
monochrome monitor (typical1y green-on-black or amber-on-black) , which 
offer s better resolution at less cost than a full-colour , RGB monitor. Such units 
are normally connected to the computer via the 'Video out' connector on the 
back of the computer. 

However, better quality medium- or high-resolution RGB monitors can also 
cope more satisfactorily with the display of small characters. 

Both RGB and monochrome monitors are powered directly from the mains. 

Connecting a disc unit 
By far the most useful expansion to the basic system is the connection of a disc 
unit which provides rapid access to files and which also removes much of the 
manual intervention associated with cassette tape storage. 

5.25",3.5" and 3" disc units 

Single or multiple drives of this type are connected to the 'disc drive' connector 
located on the front underside of the computer. (Your supplier will be able to 
ensure that the disc drive has the appropriate plug on the end of the connecting 
cable l. Some disc units are powered directly from the mains; others are able to 
take their power directly from the computer using a connecting cable and a 
specia l plug which is plugged into the 'auxiliary power output' socket. 

If you ha ve not already done so, you will probably want to re-con figure your 

176 



computer (using *CONFIGURE or the Control Panel utility) so that it selects 
either the Disc Filing System or the Advanced Disc Filing System on power-up. 

Winchester Disc units 

The Acorn (and other) Winchester hard disc units are mains powered and 
connected via the '1 MHz bus' connector, located on the front underside of the 
computer. 

Winchester disc drives must be operated under the control of the Advanced 
Disc Filing System. 

Connecting a printer 
A printer is almost essential if you are going to use the VIEW word-processor or 
ViewSheet; it is a convenience if you are writing programs of your own. 

Your computer can be used with the vast majority of currently-available 
printers, which are of two types: 

- parallel printers, incorporating a 'Centronics (r) interface' ; 
- serial printers, incorporating a 'RS232-C (or V24) interface'. 

All printers are mains powered; parallel printers are connected to the 'printer' 
socket on the front underside of the computer; serial printers are connected 
(using a 5-pin (Domino) DIN plug) to the RS423 socket on the back of the 
computer. (RS423 is a later, but compatible standard to RS232C). 

You must tell the computer which type of printer you are using, and this is 
done using the *FX5 command: 

* FX5, 11 RETURN 1 tells the computer that you are using a parallel printer; 
*FX5 ,2IRETURNI tells the computer that you are using a serial printer; and you 
must also tell the computer the speed (referred to as the baud rate) at which 
the printer operates using the *FX8 command: 

*FX8, 11 RETURN -
*FX8,2IRETURN 
*FX8,3IRETURN 
*FX8,4IRETURN 
*FX8,5IRETuRN 
*FX8,6IRETURN 
*FX8,7IRETURNI 
*FX8,8IRETURNI 

75 baud 
150 baud 
300 baud 

1200 baud 
2400 baud 
4800 baud 
9600 baud 

19200 baud (not guaranteed) 

Many printers have an automatic line-feed facility and in such cases, it is 
necessary to tell the computer not to send additional line-feed characters to th,~ 
printer. This is done using the command: 

*FX6,10IRETURNI 

177 



*FX6 tells the computer not to send a particular character to the printer; 10 is 
the character code for a line-feed. 

It is possible to make the computer carry out each of the necessary commands 
on power-up using the *CONFIGURE command or the Control Panel utility. 

Connecting Joystick(s) 
Many computer games and some rather more serious applications can be 
enhanced by the use of one (or a pair of) joystick(s), which can be used to 
position objects displayed on the television or monitor screen. 

Joystick(s) are connected via the 'analogue in' socket which is located on the 
computer's back panel. 

Joysticks do not require a power supply. 

The 'analogue in' socket may also be used for the input of other analogue 
signals, such as might be produced from equipment monitoring scientific 
experiments. 

Connecting a Teletext Adapter 
Using a Teletext Adapter , your computer can be made to receive (and store) 
pages of teletext information broadcast by both the BBC's CEEFAX and the 
IBA's Oracle services. 

The Teletext Adapter is a mains powered external expansion unit 
incorporating a conventional television aerial connection and a tuner unit 
enabling each of the four currently-available UK television channels to be 
selected (i.e. BBC1, BBC2, ITV and Channel 4). The unit itself is connected via 
the ' lMHz bus' connector and operates under the control of a special Telesoft 
Filing System (TFS), which is supplied (as a ROM) with the unit. 

The Teletext Adapter may also be used to access programs transmitted by the 
BBC's Telesoftware service (see CEEFAX pages 700- ). 

Connecting a Prestel Adapter 
Whilst the Terminal software in the computer (and a suitable modem) provide 
the facilities necessary to connect your computer to a variety of other computer 
systems, The Acorn Prestel Adapter provides you with a convenient means of 
accessing, and interacting with the British Telecom Prestel Service (and other 
similar View data services). 

The Prestel Adapter is a mains-powered external expansion unit which 
connects to the RS423 socket on the back of the computer. It contains a 
self-dialling modem and it is connected directly to your normal telephone socket 
using a lead and plug supplied. The Adapter also comes with a ROM containing 
the software necessary to drive the adapter. 

178 



The user port 
As mentioned above, the 'analogue in' socket can be used for the input of a 
variety of analogue signals but some devices produce digital signals and these 
can be read from the 8-bit User Port, located on the front underside of the 
computer. 

It is therefore possible to connect a Mouse or a Trackerball and use it to carry 
out functions such as controlling the movement of the cursor and identifying 
objects on the screen (using one or more of the available push buttons). 
However, the real power of the User Port lies in its ability to provide both input 
and output making it possible to transmit signals to control the operation of 
external devices such as robot arms and machine tools. 

Connecting an IEEE interface 
Whilst the 8-bit User Port is often adequate for small control applications, 
serious scientific applications will require your computer to adhere to the 
international standard IEEE 488 interface specification and this is provided by 
means of the Acorn IEEE Interface expansion unit. 

The unit is mains powered and is connected to the computer via the 'lMhz bus'. 
In turn the unit can be connected to a network of up to 14 separate devices, 
such as oscilloscopes, voltmeters, spectrum analysers and frequency meters. 

Connecting a co-processor 
In its standard form, the computer is driven by a 65C12 microprocessor but it is 
possible to fit additional co-processors, some of which are designed merely to 
expand the power and versatility of the basic machine, others to actually 
change the nature of the machine so that it can be used for applications 
requiring specialist facilities. 

The 65CI02 co-processor 

The 65C102 is an internal expansion unit which plugs directly into connectors 
provided in the computer's printed circuit board. 

It contains its own 64K of user memory and, in use, produces significant 
increases in processing speed, vital for serious computer applications, 
particularly those involving large-scale use of Assembly Language. 

The 6502 second processor 

The 6502 second processor is a mains powered external expansion unit which is 
connected via the 'Tube' connector located on the front underside of the 
computer. 

179 



Like the 65C102 co-processor, it contains its own user memory and increases 
your computers processing speed and capability. 

The 32016 second processor 

The 32016 second processor is a mains powered external expansion unit which 
is connected via the 'Tube'. It contains a NS32016 32-bit processor and up to 
1Mb of user RAM, thereby producing a 32-bit microcomputer system suitable 
for the efficient development and execution of software requiring a large 
amount of processor power or 32-bit arithmetic. In addition to BBC BASIC, the 
32016 second processor comes with four languages, C, FORTRAN 77 , 
Cambridge Lisp and Pascal. An internal, co-processor version is planned for 
later availability. 

Operation of the 32016 second processor is controlled by the PANOS operating 
system supplied with the unit. 

The Z80 second processor 

The Z80 second processor is a further mains powered external expansion unit 
which may be connected to the computer via the 'Tube'. It contains a Z80 
processor and its own 64K of user memory which allows you to load the CP/M 
operating system - probably the most common business-oriented operating 
system in use - and hence gives access to what is one of the largest business 
software libraries available. 

The usual CP/M utilities are provided with the unit together with a series of 
software packages: 

BBC BASIC; 
MemoPlan, a CP/M based word-processor; 
FilePlan, a personal database package; 
GraphPlan, a spreadsheet modelling program; 
Accountant, an integrated accounting system; 
CIS COBOL (incorporating the ANIMATOR debugging tool and FORMS2, 
an aid to the development of interactive CIS COBOL programs); 
Nucleus a system generator which will help you to develop your own CP/M 
based software. 

Further co-processors based on other microprocessors and operating systems 
are both possible and likely to be made available for your computer. Contact 
your dealer or supplier for details. 

180 



AppendixA 

Mode characteristics 
Table 1 below gives the text, character set, graphics and colour capability of 
each of the eight standard screen modes and their corresponding 'shadow' 
screen modes. 

Information relating to the default colour assignments for screen modes 0 - 6 
and their corresponding 'shadow' screen modes is given in Table 2. A change of 
mode always results in the selection of a white foreground and a black 
background for both text and graphics (if available). 

Table 1 

Mode Text Text Character Graphics Pixels Colours 
rows columns set 

o (128) 32 80 ASCII 640 x 256 2 
1 (129) 32 40 ASCII 320 x 256 4 
2 (130) 32 20 ASCII 160 x 256 16 
3 (131) 25 80 ASCII - 2 
4 (132) 32 40 ASCII 320 x 256 2 
5 (133) 32 20 ASCII 160 x 256 4 
6 (134) 25 40 ASCII - 2 
7 (135) 25 40 TELETEXT (see Appendix B) 

181 



Table 2 

Mode Foreground Background Colour 

0(128) 
3 (1 31) 0 128 Black 
4 (1 32) 1 129 White 
6 (134) 

0 128 Black 
1 (129) 1 129 Red 
5 (133) 2 130 Yellow 

3 131 White 

0 128 Black 
1 129 Red 
2 130 Green 
3 131 Yellow 
4 132 Blue 
5 133 Magenta 
6 134 Cyan 

2 (130) 7 135 White 
8 136 * Black/White 
9 137 * Red/Cyan 
10 138 '" Green/Magenta 
11 139 '" Yellow/Blue 
12 140 '" Blue/Yellow 
13 141 * Magenta/Green 
14 142 * Cyan/Red 
15 143 * White/Black 

* denotes a flashing colour pair 

182 



183 



AppendixB 

Character Sets 
ASCII displayed character set (modes 0 to 6 and 128 to 134) 

ASCII codes in the range 0 to 31 are control codes which correspond to the VDU 
codes described in Appendix G. 

'\) ,'\) ':l,,~ .,,'\) .1\1 ~~ ,,1\1 ,\1\1 '01\1 0,1\1 ,1\11\1 

~nthtng Down DefulIlt Move 
logicAl text 

0 ('(lln rs cursor 
to 00 

;..IPXI to Up Disable MovE' 

printer VD U I.ext 

cursor 

Sta n Clear Select 

2 
printer text mode 

Stop Start o f Rep rogram U :1 printer line characters 

Separate Paged Defim' IiI 4 cu rsors modE' graphics 
area 

,Join Scro ll PIOl El] 5 cu rsors mode 

Enable Clear Default 

6 
VDU graphics text/ ~ graphici-i 

areas 

Beep Define I'\othing ra 7 ({'xl 

color 

Back Define Define 

8 
graphic..,; text [;3 colaI' area 

Porward Define Define 

9 logical graphics • co lon. origin 

Each displayed character consists of eight rows of eight dots. 

184 



185 



Teletext displayed alphanumeric character set (modes 7 and 135) 

Codes in the range 0 to 31 are control codes which correspond to the VDU codes 
described in Appendix G. 

Codes in the range 128 to 159 are the Teletext control codes which affect 
subsequent characters on the same line (see page 95). The characters shown in 
the table below are those displayed under the effect of an alphanumeric control 
code. 

. 

i~ ~ 
.,'\) ,,'\) ·o~ .'\) {.)~ ,,'\) '\~ '10"'- o,'\) "'-'\) 

" 
,,'\) 

" 
\.'1-~ 

Ko thing Do wn !\loth ing M o ve 

I ! I Ii Ii I E I cursor i 0 10 00 

:'-Jext t (1 l ip Disahle Mo ve 

I I Ii I " ; ~ I 1! J printer VDll cursor 

I Start ('l t~a r Select 

I ~ 
prin ter scr E'en mode I Ii 11 I Ii I; I 11 f! Ea 

I SlOP S IMt of Rep rogram 
prin ter line characters 11 11 i 11 11 I ;; E I e :J. 

:\oth ing Paged l\oth i n~ 

III I ~. W I 11 Ii Ii Ii III < modE' 

No thing Scro ll Nothin~ 

W I D (I II I I E! I " 
mod e a 

Enable Nothing Nothing 

Il I E IS ! m D D ii j 6 
\'D C la 
Beep :'\oth ing Nothing 

I I Ei I li ~ E 11 I 
Back 

7 space and 
delete 

Rack Nothing i'\othing No th ing 

8 I " I l! 11 tI lE 11 Ii 
Forv.'ard No thing No thing 

I IJ (! i 
Alpha 

9 B I a [11 I red 

Each code produces a unique character. Thus VDU 78 or PRINT 
CHR$(78) would display an N since column 70, row 8 shows an N . 

186 



,,'0 
" " - , 

" " ' , 
Alpha Normal * Graphic 

I Ii ;J I Ii li I 11 [! E green height cyan 

Alpha Double· Graphic 

11 Ii is Ii 11 I • E E I yellow height white 

Alpha Nothing Conceal 

I I r; ii I 11 Ii i Ii ID blue display 

Alpha Nothing Contiguous 

[! I I (; 11 I ID E! & I magenta graphics * 

Alpha Nothing Separated 

W I I la I! I I D U Ii cyan graphics 

Alpha * Graphic Nothing 

I I I I li m I€ IJ I: LJ white red 
. d 

Flash Graphic Black * 

B I I I! 11 I lE I! I green background 

Steady · Graphic New 

I 11 B l! I D I III I yellow background 

Nothing Graphic Hold 

I E I Ii Ii ! E fi I blue graphics 

Nothing Graphic . Release * 

I E i I 11 ; ; E I magenta graphics 

• every line starts with these optlons 

187 



Teletext displayed graphics characters 

Codes in the range 0 to 31 are control codes which correspond to the VDU codes 
described in Appendix G. 

Codes in the range 128 to 159 are the Teletext control codes which affect 
subsequent characters in the same line (see page 95). The characters shown in 
the table below are those displayed under the effect of a graphics control code. 

~ ~ '\~ q~ 'O~ ~~ "'~ IQ~ '\~ "'~ 0,'1> '\~~ '\'\~ '\"~ 
Notlring Down Nothing Move 

li ii r! cursor 

~ ~ r. Cl c r 0 to 00 

Next to Up Disable Move 

~ I 11 l} ~ ~ 1 printer VDU cursor 

~ I · • I -

Start Clear Select 

- I Ii Ii " =- ~ • 2 printer screen mode • L iI • , 

Stop Start of Reprogram 

11 II 1--• It I Ii 3 printer line characters .. ~ ~ ~ 

Nothing Paged Nothing • = iI ~ I 11 Ii r ~ r-4 mode 

Nothing Scroll Nothing 

W ;: 11 " • ~ ~ 
5 mode ~ II U 

Enable Nothing Nothing a IS I .. I ~ i 6 VDU 

~ ~ I! LJ . 

Beep Nothing Nothing 

~ I Ii m ~ • I ~ 
Back 

7 

~ ~ space and 
delete 

Back Nothing Nothing 

I! I 
Nothing 

8 

~ ~ ~ 11 .. ,C- ~ 
FOIward Nothing N«thing 

I! D 
Alpha 

9 

~ ~ ~ " r ~ . I ~ red 

Each character has a code. Thus H is code 72 since it is in column 70 
row 2. 

188 



'O~ 
" ",,~ ",,~ ",,<so ,,'\~ ,,'O~ "Oj~ ,~~ ,,,~ 'i'<SO ,'O~ ,"<SO ,"<SO 

Alpha Normal .. Graphic • L , • Ii (i I :- • • green height eysn 

! . 
Alpha Double .. Graphic • l.- II f U is I; .. yellow height white 

I . rl', • 
Alpha Nothing Conceal 

11 l1li ~ W I 11 Ii r .. -blue display .. 
Alpha Nothing Contiguous 

~ , ;: 11 ~ W i(1 ~ 
. ~ 

magenta graphics · • - • .1 

Alpha Nothing Separated 

:I ~ -= la I! I .. I ~ . 1 graphics , eyan - 1 , . 

" Ii ~ 
Back Alpha ' Graphic Nothing .. ~ ~ I , . space white red 
a.nd - delete 

Flash Graphic Black' 

=- ~ ~ I! 11 I ~ l1li ~ green background .. 
Steady · Graphic New 

~ ~ 
, 

la ~ D . . i. yellow background 
~ ~ ! • • 

Nothing Graphic Hold 

~ l1li Ii Ii l! ~ • ,. blue graphics ~ i . .' Nothing Graphic Release 

-= I I ; ~ ~ ! ~ 
magenta graphics· • • • 

• every line starts with these options 

189 



Keyboard codes 

The code produced by each key on the keyboard depends upon the settings of 
caps lock, shift lock and the depression of 1 SHIFT 1 or 1 CTRL I. For each key in the 
diagram below: 

the lower number is the lower case code; 
- the middle number is the upper case code; 
- the top number is the code generated if the key is depressed in conjunction 

with 1 CTRL I. 

The codes generated by the 10 function keys can be specified by the user (see 
Appendix D). 

The cursor editing keys produce codes only if enabled with *FX4 (see Appendix 
D). 

All numbers are given in decimal. 

190 



191 



AppendixC 

Operating system commands 
Operating system commands provide a means of communicating your 
requirements to the MOS. The commands described below are of a general 
nature; summaries of the commands applicable to the various filing systems 
are contained in Appendix E. 

Operating system commands may be issued directly from the keyboard (in 
which case they are terminated by depression of IRETURNI) or incorporated in 
programs. 

Most commands may be abbreviated to their first few characters terminated by 
a . - where applicable, the minimum abbreviation for each command is given 
in brackets after each command name. 

Commands marked 0 apply to facilities required only by advanced users and 
full details can be found in the Reference Manual. 

*CODE 

*CONFIGURE (*CO.) 

192 

o Provide a means of executing machine code 
routines which are already in memory as if they 
were part of the MOS. 

Provide a direct means of altering the settings held 
in the CMOS RAM (i.e. without using the Control 
Panel utility described on page 23). *CONFIGURE 
takes one or two parameters, the first being the 
name of the setting to be changed; the second (if 
necessary) being the value to be stored in the ' 
CMOS RAM. In the parameter list below, n and m 
denote decimal numbers; x denotes a number in 
hexadecimal notation. 

o BAUD n 

BOOT 

CAPS 
o DATA n 

DELAY n 

Change the RS423 transmit/receive 
rate setting according to n. 
Reverses the actions of '-:1 B=-=R-=-EA""-K'I and 
1 SHIFT 1+1 BREAKI· 

Set CAPS LOCK option. 
Change the RS423 data format 
setting according to n. 
Change the keyboard auto-repeat 
delay setting to n hundredths of a 
second. 



D DIR 

EXTUBE 

D FDRIVE n 

FILE x 

FLOPPY 

HARD 

IGNORE n 

INTUBE 

LANG x 

LOUD 

MODE n 

NOBOOT 

NOCAPS 
D NODIR 

NOSCROLL 
NOTUBE 

PRINT n 

QUIET 

REPEAT n 

SCROLL 
SHCAPS 

Initialise ADFS with selected 
directory. 
Use an external second processor (if 
fitted). 
Configure the disc controller for 
different types of disc unit according 
to n . 
Change the default filing system 
setting to that contained in ROM 
socket x. 
Cause ADFS to access the floppy disc 
unit when initialised. 
Cause ADFS to access the 
Winchester disc unit when 
initialised. 
Change the 'printer ignore character' 
to ASCII n. If n IS omitted, all 
characters are sent to the printer. 
Use an internal co-processor (if 
fitted). 
Change the default language 
setting to that contained in ROM 
socket x. 
Change the volume setting for the 
BELL sound to full. 
Change the display mode setting to n 
(0-7 or 128- 135). 
Assigns normal function to 1 BREAK 1 
and 1 SHIFT 1 + 1 BREAK I· 
Reset the CAPS LOCK option. 
Initialise ADFS without a directory 
selected. 
Enables the scroll protect option. 
Ignore both internal and external 
co-processors. 
Change the printer type setting 
according to n (see page 177). 
Change the volume setting for the 
BELL sound to half volume. 
Change the keyboard auto-repeat 
rate setting to n hundredths of a 
second. 
Disables the scroll protect option. 
Set the ISHIFTI+I Etl~ 1 option. 

193 



*GO 

*GOIO 

*HELP (*H.) 

*IGNORE (*IG.) 

*INSERT (*INS.) 

*LINE 

194 

TUBE 

TV n,m 

Use a second (co-) processor (if 
available). 
Set the vertical screen alignment and 
interlace option settings (as "TV 
below). 

When used without a parameter, *CONFIGURE 
displays a list of the above options. 

o Execute a machine code program in a single 
processor system or in the language processor of a 
system equipped with an internal or external 
second processor. 

o Execute a machine code program in the I/O 
processor of a system equiped with a second 
processor (i.e. across the Tube). 

Display brief information about the MOS, the 
languages and the filing systems currently resident 
(but not necessarily selected) in the machine. 

Set the 'printer ignore character' (see pagel77).For 
example: 

*IGNORE 10 causes line feed characters (ASCII 
10) to be ignored by the printer. 

o It is possible to make the MOS ignore the presence 
of a given ROM using the *UNPLUG command 
described below. *INSERT returns the ROM in a 
specified socket to its normal status, but only after 
a hard break or subsequent power-on. 

Assign a sequence of characters to a specified 
function key (see page 14). For example: 

*KEY 0 LIST I M assigns the BASIC LIST command 
to function key o. 

o Acts in a similar manner to *CODE (above) except 
that it provides a means of passing a line of text 
(i.e. the remainder of the command) to the routine. 



*MOTOR (*M.) 

*MOVE 

*ROMS 

*SHADOW (*SH.) 

*SHOW 

*SHUT 

*SRDATA 

*SRREAD 

Controls the cassette recorder motor: 

*MOTOR 0 
*MOTOR 1 

switches the cassette motor off; 
switches the cassette motor on. 

o Copy files from one filing system to another, for 
example: 

*MOVE -DISC-ADDRESS -TAPE-BACKUP 

copies file ADDRESS from (DFS) disc to cassette, 
using the name BACKUP. 

Display a list of the ROMs currently present in 
each of the 16 ROM sockets. The listing gives the 
socket number (in hexadecimal), the ROM name 
and an indication of whether the ROM is currently 
available (see "'UNPLUG below). 

Switch to either the main memory or the shadow 
memory: 

*SHADOW 0 causes the shadow memory to be 
selected on subsequent mode changes 
(even if the mode selected is in the 
range 0 - 7); 

*SHADOW 1 causes main or shadow memory to be 
selected according to the mode 
number (i.e. modes 0 - 7 select main 
memory, modes 128 - 135 select 
shadow memory). 

Display the sequence of characters currently 
assigned to a specified function key. For example: 

*SHOW 0 displays the sequence of characters 
currently assigned to function key O. 

Close all currently open files known to the MOS, 
regardless of the current filing system. 

o Reserve a designated area of sideways RAM for use 
with data. 

o Copy a designated area of sideways RAM to normal 
RAM. 

195 



*SRROM 0 Reserve a designated area of sideways RAM for use 
with absolute addressing. , 

*SRWRITE 0 Copy a designated area of normal RAM to sideways 
RAM 

*STATUS (*ST.) Display the current content of the various settings 
held in the CMOS RAM. *STATUS may also be 
used with one of the parameters described under 
*CONFIGURE (above), in which case only the 
specified setting is displayed. For example: 

*STATUS displays the setting of the keyboard 
DELAY auto-repeat delay held in the CMOS 

RAM· , 
*STATUS displays all the settings held by the 

CMOSRAM. 

*TIME (*TI .) Display the current day, date and time from the 
CMOS RAM. 

*TV Two parameters are used, the first indicating an 
adjustment to the vertical screen alignment; the 
second defining the setting of the interlace option. 
For example: 

*TV0,1 causes no vertical screen adjustment 
but sets the interlace off; 

*TV1,0 causes the screen to be shifted up one 
line and sets the interlace on; 

*TV255,1 causes the screen to be shifted down 
one line and sets the interlace off. 

*UNPLUG (*UNP. ) 0 Cause the MOS to ignore the ROM in a specified 
socket after the next hard break or power-on. 

196 



AppendixD 

*FX commands 
A proportion of the memory reserved for use by the MOS is given over to the 
storage of information relating to the current state ofthe machine and how it is 
to react in various circumstances. This information is directly accessible to, and 
may be changed by the user by means of special operating system calls (often 
referred to simply as OSBYTE calls). 

Some OSBYTE calls have an equivalent *FX command which may be issued 
directly from the keyboard or included in, say, a BASIC program and these 
commands are summarised below. Commands marked D provide access to 
facilities required only by advanced users and full details can be found in the 
Reference Manual. 

Apparent gaps in the sequence relate to OSBYTE calls which do not have an 
equivalent *FX command and which must therefore be implemented by means 
of techniques beyond the scope of this guide. 

Parameters in *FX commands may be separated by a comma (as In the 
examples below) or a sequence of one or more spaces. 

If a parameter is omitted it is assumed to be zero. 

*FX0 Display MOS version. 

*FX1 D Reserved for application programs. 

*FX2 Select input stream: 

*FX2,0 keyboard only (disables RS423input); 
*FX2,1 RS423 input only; 
*FX2,2 keyboard input and buffered RS423 input. 

*FX3 Select output stream: 

*FX3,0 Printer and screen only; 
*FX3,1 Printer, screen and RS423; 
*FX3,2 Printer only; 
*FX3,3 Printer and RS423; 
*FX3,4 Screen only; 
*FX3,5 Screen and RS423; 
*FX3,6 none; 
*FX3,7 RS423 only. 

D Other values may also be used. 

197 



*FX4 

*FXS 

*FX6 

Enable/disable cursor editing: 

*FX4,0 enable cursor editing; 
*FX4,1 disable cursor editing and assign ASCII 

codes: 

I COpy I 135 
(- 136 
---i> 137 

t 138 

i 139 

*FX4,2 disable cursor editing and assign soft key numbers: 

I COpy I 11 
(- 12 
---i> 13 
t 14 

i 15 

Select printer type (see page 177): 

*FXS,0 selects printer sink (no printing); 
*FXS,1 selects parallel printer; 
*FXS,2 selects serial printer; 

D * FXS,3 selects user printer routine; 
*FXS,4 selects network printer server. 

Printer types higher than 4 should not be used. 

The default setting can be set using *CONFIGURE PRINT (see 
page 192). 

Select printer ignore character (equivalent to *IGNORE). 
For example: 

*FX6,10 prevents line feeds (ASCII 10) being sent to the 
printer. 

*FX7 D Select RS423 receive rate. 

*FX8 D Select RS423 transmit rate (see page 177). 

*FX9 

198 

Set flash rate of first colour in fiftieths of a second (default 
setting 25). 

*FX9,0 disables flashing and forces the first colour on the 
screen; 

*FX9,10 sets the flash rate to one fifth of a second. 



*FX10 

*FX11 

*FX12 

*FX13 

*FX14 

*FX15 

*FX16 

*FX17 

*FX18 

*FX19 

*FX20 

*FX21 

Set flash rate of second colour in fiftieths of a second (default 
setting 25). 

*FX10,0 disables flashing and forces the second colour on the 
screen; 

*FX10,5 sets the flash rate to one tenth of a second. 

Set keyboard auto-repeat delay in hundredths of a second 
(default setting 32 or as set by *CONFIGURE DELAY ). 

*FX11,0 disables auto-repeat; 
*FX11,10 sets auto-repeat delay to one tenth of a second. 

Set keyboard auto-repeat period in hundredths of a second 
(default setting 8 or as set by *CONFIGURE REPEAT ). 

*FX12,0 restores default settings of auto-repeat delay and 
auto-repeat period. 

*FX12,3 sets auto-repeat period to three hundredths of a 
second. 

o Disable various events. 

o Enable various events. 

Flush buffers: 

*FX15,0 flushes all buffers; 
*FX15,1 flushes current input buffer. 

o Select number of ADC channels. 

o Select next ADC channel to be sampled. 

Clear user-defined function key definitions. 

o Wait for vertical synchronisation. 

Restore default font definitions i.e. reset the characters 
corresponding to ASCII codes 32 to 126 to normal. 

Flush selected buffer: 

*FX21,0 keyboard buffer; 
*FX21,1 RS423 input buffer; 
*FX21,2 RS423 output buffer; 
*FX21,3 printer buffer; 
*FX21,4 sound channel 0; 
*FX21,5 sound channel 1; 
A K 9 * F X 2 1 ,6 sound channel 2; 
* FX21 ,7 sound channel 3. 

199 



*FX22 

*FX23 

*FX25 

*FX107 

*FX108 

*FX109 

*FX112 

*FX113 

*FX114 

*FX118 

*FX119 

200 

o Increment ROM polling semaphore. 

o Decrement ROM Polling semaphore. 

Restore a group of font definitions: 

* FX25,0 restore character codes between 32 and 255; 
*FX25,1 restore character codes between 32 and 63; 
*FX25,2 restore character codes between 64 and 95; 
*FX25,3 restore character codes between 96 and 127; 
*FX25,4 restore character codes between 128 andl59; 
*FX25,5 restore character codes between 160 and 191; 
*FX25,6 restore character codes between 192 and 223; 
*FX25,7 restore character codes between 224 and 255. 

Select internal or external 1MHz bus: 

*FX107,0 selects external bus; 
*FX107,1 selects internal bus. 

Switch main / shadow memory into main map: 

*FX108,0 switches main memory into main map (immediate); 
*FX108,1 switches shadow memory into mam map 

(immediate). 

o Make temporary filing system permanent. 

Select memory to which characters will be written until the 
next mode change: 

*FX112,0 writes to memory specified by the mode change; 
*FX112,1 writes to main memory (immediate); 
*FX112,2 writes to shadow memory (immediate). 

Select memory to be displayed until the next mode change: 

*FX113,0 displays the memory specified by the mode change; 
*FX113,1 displays main memory (immediate); 
*FX113,2 displays shadow memory (immediate). 

Select main / shadow memory in subsequent mode changes 
(equivalent to *SHADOW): 

*FX114,0 forces selection of shadow memory; 
*FX114,1 selects main/shadow memory according to mode 
number. 

o Reflect keyboard status in keyboard LEDs. 

o Close any *SPOOL / *SPOOLON / *EXEC files . 



*FX120 

*FX124 

*FX125 

*FX126 

*FX136 

*FX137 

*FX138 

*FX139 

*FX140 

*FX141 

*FX142 

*FX143 

*FX144 

o Write 'keys pressed' information. 

o Acknowledge 'escape condition' without side effects. 

o Set 'escape condition'. 

o Acknowledge 'escape condition' with side effects. 

o DefIne entry point for user MOS routine (equivalent to *CODE). 

Switch cassette relay (equivalent to *MOTOR): 

*FX137,0 switch relay OFF; 
*FX137,1 switch relay ON. 

Insert character code into buffer. (See *FX21 for a list of buffer 
numbers.) For example: 

*FX138,0,65 places ASCII 65 CA) into the keyboard buffer. 

o Select option value (equivalent to *OPT). 

Select cassette fIling system and baud rate (equivalent to 
*TAPE} ): 

*FX140,3 sets the transfer rate to 300 baud; 
*FX140,12 sets the transfer rate to 1200 baud. 

Select ROM fIling system (equivalent to *ROM). 

o Enter language ROM. 

o Issue paged ROM service request. 

Set vertical screen shift and interlace option for next mode 
change or break (equivalent to *TV). For example: 

*FX144,0,1 gives no screen shift and turns the interlace off; 
*FX144,1,0 shifts the screen up by one line and turns the 

interlace on; 
*FX144,255 shifts the screen down by one line (and turns the 

interlace on). 

*FX146- 0 Access memory-mapped 110 areas. 
*FX151 

*FX153 0 Insert character code into buffer, checking for ESCAPE. 

*FX154 0 Write to Video ULA control register. 

*FX155 0 Write to Video ULA palette register. 

*FX156 0 Write to 6850 ACIA control register. 

201 



*FX157 

*FX162 

*FX178 

*FX179 

*FX18Ql 

*FX181 

*FX183 

*FX19Ql 

*FX191 

*FX193 

*FX194 

*FX195 

*FX196 

*FX197 

*FX198 

*FX199 

*FX2QlQl 

*FX2Ql1 

*FX2Ql2 

*FX2Ql3 

*FX2Ql4 

*FX205 

*FX2Ql6-
*FX2Ql8 

*FX21Ql 

202 

D Write byte across Tube_ 

D Write to CMOS RAM. 

D Disable keyboard scanning. 

D Write ROM polling semaphore. 

D Write Operating System High Water Mark (OSHWMl. 

D Write RS423 mode. 

D Write cassette/ROM filing system switch. 

D Set ADC resolution. 

D Write RS423 use flag. 

D Write flash counter. 

D Write mark period count. 

D Write space period count. 

D Write keyboard auto-repeat delay. 

D Write keyboard auto-repeat period. 

D Write *EXEC file handle . 

D Write *SPOOL file handle. 

D 

D 

D 

D 

D 

D 

Set BREAK and ESCAPE effect according to n: 

*FX20Ql,Ql set normal BREAK and ESCAPE action; 
*FX2Ql0,1 set normal BREAK and disable ESCAPE; 
*FX20Ql,2 clear memory on BH.EAK and set normal ESCAPE 

action; 
*FXZQlQl,3 clear memory on BREAK and disable ESCAPE. 

Write keyboard disable. 

Write keyboard status byte. 

Write RS423 handshake extent. 

Write RS423 input suppression flag. 

Write cassette/RS423 selection flag. 

Used by Econet. 

Write sound suppression status: 

*FX21Ql,Ql enables sound output; 
*FX21Ql,1 disables sound output. 



*FX211 

*FX212 

*FX213 

*FX214 

*FX215 

*FX216 

*FX217 

*FX218 

*FX219 

*FX220 

Write BELL (I CTRL 1+ G) channel (default setting 3). For 
example: 

*FX211,0 selects channel O. 

Write BELL (I CTRL 1+ G) sound information (default setting 
144). For example: 

*FX212,200 produces a 'softer' BELL sound. 

Write BELL q CTRL I+ G) frequency (default setting IOn For 
example: 

*FX213,200 produces a high-pitched BELL sound. 

Write BELL (I CTRL 1+ G) duration (default setting 7). For 
example: 

*FX214,1 produces a very short BELL sound; 
*FX214,255 produces an indefinite BELL sound. 

D Write start-up message suppression and !BOOT option status. 

D Write length of soft key string. 

D Write number of lines printed since last page halt. 

D Write number of items in VDU queue. 

Write character value returned by I TAB I (default setting 9, i.e. 
cursor right). For example: 

*FX219,127 makes 1 TAB 1 equivalent to IDELETEI· 

Write ESCAPE character (default setting 27). For example: 

*FX220,32 makes [SPACE BAR] the IESCAPE 1 key. 

*FX221- D Write input buffer code interpretation status. 
*FX224 

*FX225 Write function key status: 

* FX225,0 disables the function keys; 
* FX225, 1 gives the keys their normal function of generating 

strings; 

The function keys may also be set to generate a single ASCII 
code using *FX225,n (where n is the base number in the range 
2 - 255). This has the effect of assigning ASCII n to 1 fo I, 
ASCII n+ 1 to I f1 I, ASCII n+2 to I f2 I etc. So, for example: 

*FX225,65 causes I fo I to generate ASCII 65 (A), I f1 I to 
generate ASCII 66 (B), I f2 I to generate ASCII 67 
(C) etc. 

203 



*FX226 

*FX227 

*FX228 

*FX229 

*FX230 0 

*FX231 0 

*FX232 0 

*FX233 0 

*FX236 0 

*FX237 0 

*FX238 

*FX241 

*FX244 0 

*FX245 0 

*FX246 0 

*FX247- 0 

*FX249 

204 

Set base number for I SHIFT 1+ function key depressions (default 
setting 128). For example: 

*FX226,97 causes ISHIFTI+I fa I to generate ASCII 97 (a), 
I SHIFT 1+1 fl I to generate ASCII 98 (b) etc. 

Set base number for I CTRL I+function key depressions (default 
setting 144). For example: 

*FX227,48 causes I CTRL H-I fa I to generate ASCII 48 (0), 

I CTRL 1+ 1 fl I to generate ASCII 49 (1) etc. 

Set base number for I SHIFT 1+ 1 CTRL I+function key depressions 
(default setting: no effect). For example: 

*FX228,200 causes ISHIFTI + I CTRL 1+ 1 fa 1 to generate ASCII 
200, ISHIFTI+I CTRL 1+ 1 fl 1 to generate ASCII 201 
etc. 

Write ESCAPE key status: 

*FX229,0 gives IESCAPE I its normal function; 
*FX229,1 causes IESCAPE I (or the key selected by 

*FX220) to generate its ASCII code. 

Write flags determining ESCAPE effects. 

Write IRQ bit mask for user 6522. 

Write IRQ bit mask for 6850 (RS423) . 

Write interrupt bit mask for system 6522. 

Write character destination status. 

Write cursor editing status. 

Set base number for numeric keypad (default setting 48 for 
keypad 0). 

Not used 

Write soft key consistency flag. 

Write printer destination flag. 

Write printer ignore character. 

Intercept BREAK vector. 



*FX254 

*FX255 

Set effect of 1 SHIFT 1 on numeric keypad: 

*FX254,0 causes 1 SHIFT 1 to operate (i.e. 
1 SHIFT 1+ keypad 0 generates D; 

*FX254,1 makes 1 SHIFT 1 have no effect. 

o Write start-up options. 

205 



AppendixE 

Filing system commands 
Listed below are the commands available under the various filing systems. In 
reality, many of the commands are handled by the MOS but, for the sake of 
completeness, such commands are listed (and duplicated) under each filing 
system heading. 

Most commands may be abbreviated to their first few characters terminated by 
a . - where applicable, the minimum abbreviation for each command is given in 
brackets after each command name. 

Commands marked 0 apply to facilities required only by advanced users; full 
details can be found in the Reference Manual. 

The Cassette Filing System 

*BUILD (*BU.) 

*CAT <*.) 

*CLOSE (*CL.) 

*DUMP (*D.) 

*EX 

*EXEC (*E.) 

206 

Create a cassette file containing lines oftext typed in 
by the user. Each line must be terminated by 
1 RETURN I; the end of input is indicated by pressmg 
IESCAPE I. For example: 

*BUILD START creates a file called START 
containing lines subsequently 
typed by the user. 

Display a catalogue (i.e a list of filenames plus other 
information) of the current cassette. 

Close all currently open cassette files. 

Produce a hexadecimal dump of the named cassette 
flle. For example: 

*DUMP MYFILE produces a dump of file MYFILE. 

o Similar to *CAT (above) except that it provides 
additional information about each file. 

Cause the MOS to take input from the named 
cassette file rather that the keyboard. For example: 

*EXEC START causes the MOS to take input from file 
START. 



*LIST (*LI.) 

*LOAD (*L.) 

*OPT1 <*0.1) 

*OPT2 (*0.2) 

*OPT3 (*0.3) 

*PRINT <*P.) 

*RUN 

*SAVE (*S.) 

*SPOOL (*SP.) 

*SRLOAD 

*SRSAVE 

o Display the content of the named cassette file III 

GSREAD format with line numbers. 

o Load the named cassette file into memory. 

Adjust the level of output during file operations: 

*OPT1,0 suppresses output of all information; 
*OPT1 ,1 allows output of the filename, block count 

and length; 
*OPT1,2 allows output of the filename, block count, 

length, load address and execution address. 

Set the action to be taken in the event of an error 
during loading: 

*OPT2,0 ignores all errors; 
*OPT2,1 prompts the user to rewind the tape; 
*OPT2,2 aborts the load and Issues an error 

message. 

o Set the length of the inter-block gap when writing 
sequential files. 

o Display a pure ASCII dump of the named 
cassette file. 

Load and execute the named machine code program 
from cassette. For example: 

*RUN PANEL 

o Save a block of memory to a named cassette file. 

When used with a filename, *SPOOL causes all 
subsequent output to the screen to be written to the 
named file; *SPOOL on its own closes the current 
*SPOOL file. For example: 

*SPOOL LISTING opens fIle LISTING and directs all 
subsequent output to it; 

*SPOOL closes the current *SPOOL file. 

o Load the specified file into a designated area of 
sideways RAM. 

o Save a designated area of sideways RAM to the 
specified file. 

207 



*TYPE <*TY.) o Display the content of the named cassette file m 
GSREAD format without line numbers. 

The ROM Filing System 

The commands listed below operate in exactly the same manner as described , 
under the Cassette Filing System. 

*CAT (*.) 
*CLOSE (*CL.) 
*DUMP (*D. ) 

*EX 
*EXEC (*E. ) 

*LIST (*LI. ) 

*LOAD (*L. ) 

*OPT1 (*0.1) 
*PRINT (*P.) 
*SRLOAD 
*RUN 
*TYPE (*TY.) 

The Disc Filing System 

Unless stated otherwise, all commands operate on the current drive and the 
current directory (see page 155). 

Certain commands allow the use of a wildcard facility , in which the character * 
may be used to denote a sequence of any characters and the character # may be 
used to note any single character. 

*ACCESS (*AC.) 

*APPEND (*AP.) 

*BACKUP (*BAC.) 

208 

Disc files may be 'locked' to prevent accidental 
erasure. * ACCESS locks or unlocks the named file , 
for example: 

*ACCESS MYPROG L locks file MYPROG; 
*ACCESS MYPROG unlocks file MYPROG. 

Extend files created using *BUILD by the addition of 
extra lines. For example: 

*APPEND START adds subsequent lines of input to file 
START. 

Make a copy of a complete disc surface. 

*BACKUP takes two parameters, the first being the 
'source drive' ; the second the 'destination drive'. For 
example: 



*BUILD (*BU.) 

*CAT (*.) 

*CLOSE (*CL.) 

*COMPACT (*COM.) 

*COPY 

*CREATE 

*DELETE (*DE.) 

*DESTROY (*DES.) 

*DIR 

*BACKUP 0 1 copies the contents of drive 0 onto the 
disc in drive 1 (assuming two drives 
are available); 

*BACKUP 0 0 copies the contents of a disc onto 
another using a single drive. The user 
is prompted to exchange the source 
and destination discs. 

Create a disc file using subsequent lines of input as 
described under the Cassette Filing System. 

Display a catalogue of the current drive. 

Close all currently-open disc files. 

Reorganise the files stored on the specified drive so 
that spaces created by file deletions (see *DELETE) 
are amalgamated into one block. For example: 

*COMPACT 0 compacts drive O. 

Copy a file from one drive to another. For example: 

*COPY 0 1 LETTER copies file LETTER on drive 0 to 
drive 1. 

o Reserve space for a file. 

Delete the name of the specifed file from the current 
drive's catalogue. (The space occupied by the file 
contents is not reallocated until the disc is compacted 
using *COMPACT). For example: 

*DELETE OLDPROG deletes the name OLDPROG from 
the current drive's catalogue. 

Delete a group of files in a single operation using the 
'wildcard' facility. For example: 

*DESTROY OLD* deletes all files whose names begin 
with the characters OLD. 

Set the current directory to the character specified, 
For example: 

*DIR W sets the current directory to W; 
*DIR : 1.B selects drive 1 and assigns directory B. 

209 



*DRIVE UDR.) 

*DUMP (*DU.) 

*ENABLE (*EN.) 

*EX 

*EXEC (*E.) 

*FORM UFO.) 

*FREE (*FR.) 

*INFO (*1.) 

210 

Set the current drive to the number specified, for 
example: 

*DRIVE 1 selects drive number 1. 

Display a hexadecimal dump of the named disc file 
as described under the Cassette Filing System. 

As a security measure, the *BACKUP, *DESTROY 
and *WIPE commands normally produce the 
prompt: 

Go ? (Y/N) 

before any action is taken. Issuing a *ENABLE 
command immediately prior to these commands 
suppresses the prompt. 

D Display information about the files held In the 
specified directory. 

Cause the MOS to take subsequent input from the 
named disc file rather than from the keyboard, as 
described under the Cassette Filing System. 

Format a blank disc for use with the Disc Filing 
System. The first parameter determines whether the 
disc is to be formatted as a 40-track or an 80-track 
disc; the remaining parameters are a list of drive 
numbers. For example: 

*FORM 40 0 formats the disc in drive 0 as a 
40-track disc; 

*FORM 80 0 2 formats the discs in drives 0 and 2 as 
80-track discs. 

Each track is verified after formatting (see 
*VERIFY below). 

Display information about the free space available 
on the specified drive . For example: 

*FREE 1 displays free space information for drive 1; 
*FREE displays free space information for the 

current drive. 

D As for *EX except that information may be obtained 
for single files (or groups of files , using the 'wildcard' 
option). 



*LIST (*LI.) 

*LIB 

*LOAD <*L.) 

*MAP 

*OPT1 <*0.1) 

*OPT4 (*0.4) 

*PRINT (*P.) 

*REMOVE (*RE.) 

*RENAME (*REN.) 

*RUN 

*SAVE (*S.) 

D Display the content of the named file in GSREAD 
format with line numbers. 

Set the library directory (see page 158). 

D Load the named disc file into memory. 

Display the free-space map for the specified drive , for 
example: 

*MAP 3 displays the free space map for drive 3; 
*MAP displays the free-space map for the current 

drive . 

Set the level of reporting during file operations: 

*OPT1,0 supresses all messages; 
*OPT1,1 allows output of the filename, load address, 

execution address, lengthand track/sector 
location on the disc. 

Set the effect of the auto-boot option: 

*OPT4,0 switches the auto-boot option off; 
*OPT4,1 *LOADs !BOOT into memory; 
*OPT4,2 *RUNs !BOOT; 
*OPT4,3 *EXECs !BOOT. 

D Display a pure ASCII dump of the named disc file. 

Equivalent in effect to *DELETE, except that the 
Not found message is suppressed if the named file 

cannot be located. 

Change the name of a disc file. For example: 

*RENAME NEWPROG OLDPROG 

Changes the name of file NEWPROG to OLDPROG. 

Load and Execute the named machine code 
program. For example: 

*RUN PANEL 

Under the Disc Filing System, a command like that 
above may be abbreviated to: 

*PANEL 

D Save a block of memory to the named disc file. 

211 



*SPOOL <*SP.) 

*SPOOLON 

*SRLOAD 

*SRSAVE 

*TITLE <*Tn.) 

*TYPE (*TY.) 

*VERIFY (*V.) 

*WIPE (*W.) 

Cause all subsequent output to the screen to be 
written to the named disc file, as described under the 
Cassette Filing System. 

Extend an existing *SPOOLfile. For example: 

*SPOOLON LISTING appends all subsequent output to 
the screen to file LISTING. 

The file is closed with *SPOOL as described under 
the Cassette Filing System. 

o Load the specified file into a designated area of 
sideways RAM. 

o Save a designated area of sideeways RAM to the 
specified file. 

Set the disc title for the current drive to the specified 
sequence of characters. For example: 

*TITLE BASIC-PROGS sets the disc title to BASIC
PROGS. 

o Display the content of the named disc file m 
GSREAD format without line numbers. 

Check the formatting of each sector on the specified 
drive. For example: 

*VERI FY 0 verifies the formatting of the disc in drive 
o 

*DELETE files specified using the 'wildcard' facility 
- the user must respond with Y (to delete) or N (to 
retain) each file. 

The Advanced Disc Filing System 

Unless stated otherwise all commands operate on the currently selected 
directory. 

Many Advanced Disc Filing System commands allow the use of the wildcard 
facility described above. 

212 



*ACCESS (*AC.) 

*APPEND (*AP.) 

*BACK 

*BU I LD ( *BU • ) 

*BYE 

*CAT (*.) 

*CDIR (*CD.) 

*CLOSE <*CL.) 

*COMPACT (*COM.) 

Set the attributes associated with files . The 
attributes are: 

E for 'execute-only' access (for machine-code 
program files only); 

L for locking a file; 
W for write access; 
R for read access. 

For example: 

*ACCESS MEMO L locks file MEMO; 
*ACCESS DADSPROG WR assigns read/write access to 

file DADSPROG. 

Extend files created using *BUILD (below) as 
described under the Disc Filing System. 

Instruct the Advanced Disc Filing System to select 
the previously-accessed directory and make it the 
current directory. 

Create a disc file containing subsequent lines of 
input as described under the Cassette Filing System. 

Ensure that all currently open files are closed at the 
end of a session (similar in effect to *CLOSE). 

Display the filenames in the current or a specified 
directory. For example: 

*CAT displays the catalogue for the current 
directory; 

*CAT $.DAVE displays the catalogue for directory 
DAVE (which is subordinate to the 
root directory. 

Create a subordinate directory with the specified 
name in the current diectory. For example: 

*CDIR MARY creates a directory called MARY in the 
current directory. 

Close all currently-open disc files. 

Reorganise the files in the directory heirarchy so 
. that spaces created by file deletions are 
amalgamated into larger blocks. 

213 



o It is possible to define the area of memory to be used 
during a *COMPACT. 

*COPY Copy a file from one directory to another. For 
example: 

*CREATE 

*DELETE <*DE.) 

*DESTROY (*DES.) 

*DIR 

*DISMOUNT 
(*DISM. ) 

*DUMP (*DU.) 

*EX 

*EXEC (*E.) 

*FREE (*FR.) 

*INFO (*1.) 

*LCAT (*LC.) 

*LEX 

2 14 

*COPY $.TEXT $.BACKUP.VIEW 

copies the file TEXT (in the root directory) into 
directory $.BACKUP.VIEW i.e. it creates a file 
whose full pathname is $.BACKUP.VIEW.TEXT 

o Reserve space for a file. 

Delete the name of the specified file. For example: 

*DELETE IDEA deletes file IDEA from the 
current directory; 

*DELETE $.DAVE.B1 deletes file Bl from directory 
DAVE (itself m the root 
directory). 

A directory may be deleted only if it is empty. 

Delete a group of files(using the wildcard facility ). 

Set the current directory (see page 161). 

Ensure that all currently-open files are closed prior 
to changing a disc. 

o Display a hexadecimal dump of the named file, as 
described under the Cassette Filing System. 

o Display information about the files contained in the 
specified directory. 

Cause the MOS to take subsequent input from the 
named disc file rather than the keyboard as 
described under the Cassette Filing System. 

Display the free space map. 

o Display information about a single file (or a group of 
files) using the 'wild card' option. 

Display a catalogue of the library directory. 

o Display information about the files held m the 
library directory. 



*LIB 

*LIST C*LI.) 

*LOAD C*L.) 

*MAP 

*MOUNT C*MOU.) 

*OPT1 C*0.1) 

*OPT4 C*0.4) 

*PRINT C*P.) 

*REMOVE C*RE.) 

*RENAME C*REN.) 

*RUN 

*SAVE C*S.) 

Set the library to the specified drive and directory. 
For example: 

*LIB $.UTILITIES 

o Display the named disc file in GSREAD format with 
line numbers. 

o Load the specified file into memory. 

Display the free-space map. 

Initialise a disc drive - commonly used to switch 
between more than one drive. 

*MOUNT I(} initialises drive O. 

Note that *MOUNT 0 is equivalent to *DIR :0 

Set the reporting level during file operations as 
described under the Disc Filing System. 

Set the operation of the auto-boot option, as 
described under the Disc Filing System. 

Display a pure ASCII dump of the named file . 

Equivalent in effect to *DELETE, except that the 
Not found message is suppressed if the file cannot 

be located. 

Change the name of a disc file. For example: 

*RENAME PROG1 PROG2 

changes the name of file PROG! to PROG2 (in the 
current directory) . 

*REN AME can also be used to physically move 
(rather than copy) a file from one directory to 
another. For example: 

*RENAME $.BASIC.THIS $.GARBAGE.THAT 

moves file THIS from directory $.BASIC to directory 
$.GARBAGE and renames it THAT. 

Load and Execute a machine code program as 
described under the Disc Filing System. 

o Save a block of memory to the named disc file. 

215 



*SPOOL (*SP. ) 

*SPOOLON 

*SRLOAD 

*SRSAVE 

*TITLE (*TIT.) 

*TYPE (*TY.) 

Cause all subsequent output to the screen to be 
written to the named disc file as described under the 
Cassette Filing System. 

Append all subsequent output to the screen to the 
named disc file as described under the Disc Filing 
System. 

D Load the specified file into a designated area of 
sideways RAM. 

D Save a designated area of sideways RAM to the 
specified file. 

Set the title for the current directory. For example: 

*TITLE WOBLETS 

Note that a directory title is distinct from a directory 
name. 

D Display the content of the named disc file III 

GSREAD format without line numbers. 

The following Advanced Disc Filing System utilities are provided on the 
Welcome disc. They may be accessed via the menu system, by typing: 

*ADFSIRETURNI 
CHAIN"UTI LITI ES" I RETURN I 

and selecting the ADFS utilities option. The menu system also provides help 
regarding both the syntax and operation of each utility. 

Alternatively, each utility may be executed individually as required. Those 
utilities whose names begin with * are machine code programs; the remainder 
are BASIC programs which must be executed using either LOAD and RUN or 
CHAIN. 

*AFORM 

*BACKUP 

CATALL 

COPYFILES 

DIRCOPY 

216 

Formats a floppy disc in ADFS format. 

Copies the contents of one disc onto another. 

A BASIC program which produces a listing of the 
contents of all the directories on a disc. 

A BASIC program which copies files from one filing 
system to another. 

A BASIC program which copies the entire contents 
of a specified directory (and all its subordinate 
directories) to another directory. 



EXALL 

HARDERROR 

RECOVER 

*VERIFY 

A BASIC program which displays information 
similar to that produced by *EX for all the 
directories on a disc. 

A BASIC program which enables permanent floppy 
disc errors to be ignored by the filing system. 

A BASIC program which enables a file, or part of a 
file to be recovered in the event of accidental 
erasure. 

Verifies the formatting on a disc. 

217 



AppendixF 

BASIC keywords 
Each BASIC keyword is described briefly below. If an abbreviated form of the 
keyword is allowed, it is given in brackets after the full version. Note that the 
abbreviation for some keywords includes an opening bracket; for example LE. 
is equivalent to LEFT$( and not just LEFT$. 

Many of the keywords are explained in more detail in Chapter 2. Keywords 
marked 0 provide access to facilities beyond the scope of this guide and users 
should consult the Reference Manual for further information. 

ABS 

ACS 

ADVAL (AD.) 

AND (A.) 

ASC 

ASN 

ATN 

AUTO (AU.) 

BGET# (B. # ) 

BPUT# (BP. # ) 

CALL (CA.) 

CHAIN (CH.) 

CHR$ 

CLEAR (CL.) 

218 

Function giving the positive value of any number. 

Function giving the arc-cosine, in radians, of any 
number from -1 to 1 inclusive. 

o Read data from the analogue port or buffers. 

Used as a logical or bitwise operator. 

Function producing the ASCII code of the first 
character in a string. 

Function giving the arc-sine, in radians, of any 
number from - 1 to 1 inclusive. 

Function giving the arc-tangent, in radians, of any 
number. 

Command to give automatic line-numbering. 

o Give the code of the next character in a file. 

o Write the code of a character to a file. 

Execute a machine-code routine. 

Load and run a BASIC program. 

Function producing the character with the gIven 
ASCII code. 

Clear the memory of all program variables, except 
the resident integer variables. 



ClG 

ClOSE# (ClO.#) 

ClS 

COlOR or 
COLOUR (C.) 

COS 

COUNT 

DATA (D.) 

DEF 

DEG 

DELETE (DEL.) 

DIM 

DIV 

DRAW (DR.) 

EDIT 

ELSE 

END 

ENDPROC (L) 

ENVELOPE 
(ENV. ) 

EOF# 

Clear the graphics window to the current graphics 
background colour. 

Close an open file. 

Clear the text window to the current text 
background colour. 

Set the text foreground or background colours. 

Function giving the cosine of any angle, the angle 
being in radians. 

Variable containing the number of characters 
printed since the last new line. 

Used in conjunction with READ to specify data items 
to be used in a program. 

Define a function or procedure. 

Function which converts from radians to degrees. 

Delete a number of lines from a program. 

Reserve memory space for an array of given size. 

Carry out integer division, any remainder being 
discarded. 

Draw a line from the last graphics point specified to 
the given point. 

Call the text editor and convert the BASIC program 
into a text file if there is sufficient room in memory. 

Part of the extended IF ... THEN statement used 
when an alternative decision may be required. 

The computer executes no further statements after 
it reaches the END statement. Its use is optional if 
the END statement is physically the last statement 
in the program. 

Indicate the end of a procedure definition. 

o Define a sound envelope. 

Function indicating whether the end of a file has 
been reached. 

219 



EOR 

ERL 

ERR 

ERROR (ERR.) 

EVAL (EV.) 

EXP 

EXT# 

FALSE (FA.) 

FN 

FOR (F.) 

GCOL (Gc.) 

GET 

GET$ 

GOSUB (GOS.) 

GOTO (G.) 

220 

Used as a logical or bitwise exclusive OR. 

Give the line number where the last error occurred. 

Give the error number of the last error. 

Part of the ON ... ERROR statement. 

Function which evaluates a string as if it were a 
BASIC calculation. 

Function which calculates e (which IS 2.7183 .. ) 
raised to the given power. 

Function which controls the length (extent) of an 
open file - note that this has no relevance for 
cassette files. 

Function returning the value O. Used III logical 
expreSSIOns. 

Used in the definition of a function or a call to that 
function. 

Start of the FOR. .. NEXT loop which causes the 
computer to repeatedly execute the statements 
between the FOR and the NEXT .. 

Set the graphics colour to be used by future graphics 
commands, and determine the way the colour 
interacts with the colour of any point in the same 
position on the screen. 

Wait for a key to be pressed and produce the ASCII 
code for that key. 

Wait for a key to be pressed and produce the 
character for that key. 

Execute a subroutine then return control to the 
statement following the GOSUB call. GOSUB is a 
more limited predecessor ofDEFPROC, and does not 
allow the passing of parameters. It is includeed for 
compatability with the BASIC language on other 
computers. 

Jump to the given line number. 



HIMEM (H.) 

IF 

INKEY 

INKEY$ <INK.) 

INPUT (I.) 

INPUT LINE 

INPUT # (I.#) 

INSTR (INS.) 

INT 

LE FT$ ( (LE.) 

LEN 

LET 

LIST (L.) 

LN 

LOAD (LO.) 

o Variable used to indicate the highest free memory 
location which can be used by the current program. 
HIMEM can be reset by the user so as to protect a 
portion of memory above HIMEM where data has 
been stored. 

Part of the IF ... THEN statement. The computer only 
executes the instruction after THEN if the condition 
following IF is true. 

o Wait for a given time for a key depression, and 
produce the ASCII code for that key. The time is 
expressed in hundredths of a second. 

o Wait for a given time for a key depression, amd 
produce the charActer for that key. The time is 
expressed in hundredths of a second. 

Wait for an input or inputs from the keyboard 
terminated by RETURN. 

Accepts, from the keyboard, a single input 
containing leading or trailing spaces or commas, 
terminated by RETURN. 

Input data from an open file and store the data in the 
variables following the INPUT# statement. 

Search one string for occurrences of another string, 
and give the character position where the matching 
string begins. 

Function which converts a decimal number into the 
nearest integer smaller than the original number. 

Extract the left part of a string. 

Function which gives the length of a string. 

Set a variable to a given value. The use of LET is 
optional in BBC BASIC. 

List the current program. LISTO sets the 
indentation options to make the program easier 
toread. LIST IF is used to list all lines containing a 
particular character sequence. 

Function which gives the natural logarithm of a 
number. 

Load a BASIC program. 

221 



LOCAL (LOC.) 

LOG 

LOMEM (LOM.) 

MID$( (M.) 

MOD 

MODE (MO.) 

MOVE 

NEW 

NEXT (N.) 

NOT 

OFF 

OLD (0.) 

ON ERROR 

ON ••• GOTO or 
ON ••• GOSUB 

222 

Declare the variables that follow as local only to that 
procedure or function. Thus they will not interfere 
with similarly named variables elsewhere in the 
program. Parameters passed to a procedure are 
automatically local. 

Function which gives the logarithm of a number to 
base 10. 

o Variable used to indicate the lowest free memory 
location which can be used to store the value of 
variables used by the program. LOMEM can be reset 
by the user. 

Extract a substring from a longer string. 

Give the integer remainder after a division. 

Change the display mode. Mode cannot be changed 
within a procedure or function. 

Move the graphics cursor invisibly to the g1Ven 
position. 

Remove the current program. It can be retrieved 
using OLD. 

Part of the FOR. .. NEXT loop indicating the end of 
the statements which are to be repeatedly executed. 

Used as a logical or bitwise operator. 

Part of the ON ERROR OFF statement which 
switches error trapping off and enables the computer 
to again print its standard error messages and halt 
the program. 

Retrieve a program after a NEW or after BREAK 
has been pressed. If typing OLD gives a 'Bad 
Program' message after the BREAK key has been 
pressed, the program has been corrupted and must 
be loaded again from tape or disc. 

Used to control the action taken by the computer ifit 
encounters an error in the program. 

The value of the variable following ON is found. Ifits 
value is 1, the computer jumps to the first line 
number in the list following the GOTO/GOSUB 
statement; if the value is 2, it jumps to the second 
line number, and so on. 



ON ••• PROC 

OPENIN COP.) 

OPENOUT (OPENO.) 

OPENUP 

OR 

OSCLI 

PAGE (PA.) 

PI 

PLOT (PL.) 

POINT( (PO.) 

POS 

PRINT (P.) 

PRINT# (P.#) 

PROC 

PTR# 

RAD 

Used to give a multi-branching facility and enable 
one of a series of procedures to be executed. 

Open a file for input only. 

Open a file for output only. 

Open a file for updating (input and output). This is 
not possible with cassette files. 

Used as a logical or bitwise operator. 

o Used to pass a string to the operating system. 

o Variable used by the computer to indicate the 
memory location at which storage of the program 
begins. PAGE can be reset by the user, so with care 
it is possible to have several programs in the 
computer memory at the same time. 

Give the value of pi (3.141592653) for use m 
calculations. 

Carry out a plotting function according to the 
parameters following the PLOT command (see the 
full list of PLOT codes in Appendix H ). 

Give the logical colour number at a particular 
graphics point. 

Give the current x coordinate of the text cursor. 

Print characters to the screen. The format of 
printing is affected by the use of ; , I and the 
printing of numbers is controlled by the value of the 
integer variable @%. 

Print the variable values following PRINT# to an 
open file . 

Define or call a procedure. 

Function which gives the position within a file where 
the next characters will be read or written. The user 
can change the value of PTR# and can thus read or 
write anywhere within the file, allowing random 
access to records. This is only possible on disc, and 
has no relevance for cassette files. 

Function which converts an angle from degrees to 
radians. 

223 



READ 

REM 

RENUMBER (REN.) 

REPEAT (REP.) 

REPORT (REPO.) 

RESTORE (RES.) 

RETURN (R.) 

RIGHT$( (RI.) 

RND 

RUN 

SAVE (SA.) 

SGN 

SIN 

SOUND (SO.) 

SPC 

224 

Read items from a DATA statement. 

A remark to help document the program. REMs are 
ignored by the computer on execution of the 
program. 

Assign default (or specified) line numbers to a 
BASIC program. 

Part of the REPEAT ... UNTIL loop which executes 
all statements between REPEAT and UNTIL until a 
condition or conditions are satisfied. Note that such a 
loop is always executed at least once, even if the 
terminating conditons are met immediately, as the 
test for the conditions comes at the end of the loop. 

Print an error message for the most recent error 
found. 

Read further data beginning at the line number 
following the RESTORE. 

Indicate the end of a subroutine which has been 
called using GOSUB. The computer returns to the 
statement in the program which is immediately after 
the GOSUB which called the routine. 

Extract the right-hand part of a string from a longer 
string. 

o Function which produces a random number. RND(1) 
gives a random decimal from 0 to 0.99999. RND(N) 
gives a random integer from 1 to N inclusive. 

Execute the program in memory. 

Save a program m the computer's memory to 
cassette or disc. 

Function which gives the sign of the number 
following, producing - 1 for minus numbers , 0 for 
zero and + 1 for positive numbers. 

Function which gives the sine of any angle , the angle 
being in radians. 

Produce a sound through the internal loudspeaker. 

Used only with PRINT or INPUT to print multiple 
spaces. 



SQR 

STEP 

STOP 

STR$ 

STRING$ (STRI.) 

TAB 

TAN (T.) 

THEN 

TIME (TI.) 

TIME$ 

TO 

TOP 

TRACE (TR.) 

TRUE 

UNTIL W.) 

USR 

Function which finds the square root of the number 
that follows. 

Part of the FOR. .. TO .. STEP statement which allows 
a FOR. .. NEXT loop with steps other than 1. 

Interrupt a program with the untrappable error 
message STOP. 

Converts a number into its equivalent string 
representation. 

Produce multiple copies of a string up to a maximum 
length of 255 characters. 

Used only with PRINT or INPUT to position the text 
cursor on the screen. 

Function which gives the tangent of any angle, the 
angle being in radians. 

Part of the IF ... THEN statement. 

Set or read the value of one of the internal clocks in 
hundredths of a second. 

Set or read the real-time clock. 

Part of the FOR. .. TO ... NEXT statement. 

o Variable giving the first free memory location after 
the end of the BASIC program. TOP is usually the 
same as LOMEM, but unlike LOMEM it cannot be 
reset by the user. 

Display the line number of each line executed. Used 
for tracing errors. TRACE OFF switches trace off, 
TRACE ON switches it on. 

Function producing the value - 1, used in logical 
expreSSIOns. 

Part of the REPEAT ... UNTIL loop, signalling the 
end of the loop. Statements between REPEAT and 
UNTIL are executed repeatedly until certain 
conditions are met . 

o Function providing a means of calling a machine 
code routine designed to produce one value. 

225 



VAL 

VDU (V.) 

VPOS (VP.) 

WIDTH (W.) 

226 

Function which converts a string into its numeric 
equivalent. The string is examined up to the first 
non-numeric character, so a string not beginning 
with a number is given a value of O. 

A general purpose command producing varIOUS 
effects on the screen display. 

Give the current y coordinate of the text cursor. 

Set the width of all subsequent lines of output. 



AppendixG 

VDU codes 
The output of text and graphics is controlled by a complex set of MOS routines 
referred to as the VDU driver. The VDU driver is active unless the display 
screen has been disabled using *FX3 (see page 196) or VDU 21 (see below). 

The codes described below alter the the behaviour of the VDU driver and may 
be used to produce a variety of effects. The most common implementation is 
through the BASIC language's VDU statement although commands to the 
VDU driver may also be issued directly from the keyboard by means of control 
key depressions (i.e. simultaneous depression of I CTRL I with another key). 

Some VDU codes consist of a sequence of values. Where necessary, these extra 
values must be specified for the code to take effect. 

Code I CTRL I Extra 
key values 

VDU 0 @ 0 

VDU 1 A 1 

VDU 2 B 0 

VDU 3 C 0 

VDU 4 D 0 

VDU 5 E 0 

VDU 6 F o 

VDU 7 G o 

Effect 

Does nothing. 

Send the next character to the printer only. 
For example: 

VDU 1,65 prints but does not display the 
character A. 

Enable the printer. 

Disable the printer. 

Write text at text cursor (i.e. restore the text 
cursor and display subsequent text in normal 
character positions). 

Write text at graphics cursor (i.e. remove the 
text cursor and display subsequent text at 
graphics co-ordinates). The position of the 
text cursor remains unaltered. 

Re-enable screen output (i.e . enable the VDU 
driver). 

Emit a bleep from the speaker. 

227 



VDU 8 

VDU 9 

VDU 10 

VDU 11 

VDU 12 

VDU 13 

VDU 14 

VDU 15 

VDU 16 

VDU 17 

VDU 18 

228 

H 

I 

J 

K 

L 

M 

N 

o 

p 

Q 

R 

° 
° 
° 
° 
° 
° 
° 

° 
° 
1 

2 

Move the text cursor one character position to 
the left. 

Move the text cursor one character position to 
the right. 

Move the text cursor down one line. 

Move the text cursor up one line. 

Clear the screen and restore the text cursor to 
position (0,0). (Equivalent to CLS). 

Move the text cursor to the start of the 
current line. 

Set page mode on (i.e. suspend output at the 
end of each full screen of output and wait for 
the user to depress ISHIFT!). 

Set page mode off (i.e. allow unrestricted 
output). 

Clear the current graphics area to the current 
graphics background colour. (Equivalent to 
CLG). 

Change the foreground or background colour 
for subsequent text output (equivalent to 
COLOUR). In mode 5 (133) , for example: 

VDU 17,2 sets the text foreground colour 
to Yellow. 

VDU 17,129 sets the text background colour 
to Red. 

Change the foreground or background colours 
for subsequent graphics output and define the 
way in which it is to be placed on the screen 
(equivalent to GCOL). In mode 2 (130), for 
example: 

VDU 18,0,4 changes the graphics 
foreground colour to Blue. 

VDU 18,0,134 changes the graphics 
background colour to Cyan. 



VDU 19 S 5 

VDU 20 T o 

VDU 21 U o 

VDU 22 V 1 

VDU 23 W 9 

Change the colour palette. VDU 19 allows 
any of the 16 available colours to be assigned 
to the colour numbers available III a 
particular mode. In mode 0 (128) for example: 

VDU 19,1,2,0,0,0 changes 
(normally White) to Green. 
VDU 19,0,7,0,0,0 changes 
(normally Black) to White. 

colour 

colour 

1 

o 

The three items at the end of this sequence 
should always be O. 

Restore default colours (i.e. revert to white 
text / graphics on a black background) and 
reset the palette to its default colour 
assignments. 

Disable the VDU driver (i.e stop subsequent 
output to the screen). 

Note that 1 CTRL 1+ U issued from the keyboard 
has the effect of deleting the current line. 

Select screen mode. This sequence should not 
be used from the keyboard in languages such 
as BASIC or from the command screens of 
either View or ViewSheet. See the Reference 
Manual for further information. 

Miscellaneous functions. 

VDU 23 provides a great many functions, 
most of which are beyond the scope of this 
guide. The functions are listed below - details 
of the remaining parameters are given in the 
Reference Manual. 

VDU 23,0 
VDU 23,1 
VDU 23,2 
VDU 23,3 
VDU 23,4 
VDU 23,5 
VDU 23,6 
VDU 23,7 
VDU 23,8 

control 6845 directly 
change cursor 

set full pattern-fIll 
patterns 

set dotted line pattern 
scroll window directly 
clear block in text window 

229 



VDU 24 

VDU 25 

VDU 26 

VDU 27 

VDU 28 

VDU 29 

VDU 30 

VDU 31 

VDU127 

230 

x 
y 

z 
[ 

\ 

] 

8 

5 

o 

o 

4 

4 

o 

2 

o 

VDU 
VDU 
VDU 
VDU 
VDU 
VDU 
VDU 
VDU 

23 9 } 23: 10 set flash rate 

23,11 restore default pattern-fills 
23,12 
23,13 
23,14 
23,15 

set simple pattern-fill 
pattern 

23,16 control cursor movement 

Functions 17 to 31 are reserved. 

Any value greater than 31 following VDU 23 
is taken as a reference to a character which is 
to be redefined (see page 91). 

Define graphics window (see page 58). 

Equivalent to the BASIC PLOT statement 
(See Appendix H.) 

Restore text and graphics windows. 

Does nothing. 

Note that 1 CTRL 1+ [ is equivalent to IESCAPE I. 

Define text window (see page 57). 

Define graphics origin (i.e. the position on the 
screen with graphics co-ordinates (0,0). For 
example: 

VDU 29,640;512; 

makes subsequent graphics co-ordinates 
relative to (640,512) -a point roughly in the 
centre of the screen. 

Note the (mandatory) use of semi-colons. 

Move text cursor to (0,0). 

Move text cursor to a specified position 
(equivalent to PRINT TAB): For example: 

VDU 31,20,10 moves the text cursor to 
character position 20 on line 10 (the first 
character position and line being 0). 

Backspace and delete (i.e. the normal action 
of IDELETEI). 



AppendixH 

PLOT codes 
The BASIC PLOT statement can be summarised as: 

PLOT code,x,y 

and its effect is to plot to the point (x,y) in a manner determined by the value of 
code. An identical effect can be produced using: 

VDU 25, code ,x; y; (note the use of semi-colons). 

The permissible PLOT codes and their effects are given (in groups of eight 
codes) in Table 1. The codes within each group are obtained by adding an 'offset' 
value to the first code in the group. The offset values are as follows: 

o 
1 

2 
3 

4 
5 
6 
7 

move relative to the previous point; 
plot relative to the previous point in the current graphics 
foreground colour; 
plot relative to the previous point in the logical inverse colour; 
plot relative to the previous point in the current graphics 
background colour; 
move to absolute position; 
plot to absolute position in the current graphics foreground colour 
plot to absolute position in thhe logical inverse colour; 
plot to absolute position in the current graphics background 
colour. 

The column headed Previous points contains the number of points which must 
have been 'visited' before the corresponding PLOT statement is executed. For 
example, in order to plot a rectangle, one corner must be first be visited 
(perhaps using MOVE or DRAW) - the co-ordinates of the diametrically 
opposite corner are specified in the PLOT statement. 

Examples of various PLOT commands are given in Chapter 2, and detailed 
information can be found in the Reference Manual. 

231 



Table 1 

Plot code Effect Previous 
points 

0-7 Solid line, includes both ends 1 
g - 15 Solid line, final point omitted 1 
16 - 23 Dot-dash line, includes both ends, 1 

pattern restarted 
24 - 31 Dot-dash line, final point omitted, 1 

pattern restarted 
32 - 39 Solid line, first point omitted 1 
40 - 47 Solid line, both points omitted 1 
48 - 55 Dot-dash line, first point omitted, 1 

pattern continued 
56 - 63 Dot-dash line, both ends omitted, 1 

pattern continued 
64-71 Point plot 
72 - 79 Line fill left and right to non-background 
80 - 87 Triangle fill 2 
88 - 95 Line fill right to background 
96 - 103 Rectangle fill 1 
104 - 111 Line fill left and right to foreground 
112 - 119 Parallelogram fill 2 
120 - 127 Line fill right to non-foreground 
128 - 135 Flood until non-background 
136 - 143 Flood until foreground 
144 - 151 Circle outline 1 
152 - 159 Circle fill 1 
160 - 167 Circular arc 2 
168 - 175 Circular segment 2 
176 - 183 Circular sector 2 
184 - 191 Rectangle copy/move: 

184 Move relative 2 
185 Relative rectangle move 2 
186/187 Relative rectangle copy 2 
188 Move absolute 2 
189 Absolute rectangle move 2 
190/191 Absolute rectangle copy 2 

192 - 199 Ellipse outline 2 
200 - 207 Ellipse fill 2 
208 - 255 Reserved 

232 



Appendix I 

VIEW Commands 
Command screen commands 

Most commands may be abbreviated to their first few characters. Where 
applicable, the minimum abbreviation is given in brackets after each command 
name. 

Commands marked 0 apply to facilities for which detailed descriptions are 
outside the scope of this guide . Full details may be found in the VIEW User 
Guide. 

Note that operating system and filing system commands can be issued from the 
VIEW command screen. 

CHANGE (0 

CLEAR (CL) 

COUNT (CO) 

EDIT (E) 

FINISH (F) 

FIELD n (FI) 

FOLD 

FORMAT (FOR) 

LOAD (L) 

MICROSPACE (MD 

Find all occurrences of one target string and 
change it for another. For example: 

CHANGE WATER WINE 

Remove all markers from the text. 

Count the number of words in memory or between 
markers (if specified). 

o Start editing a file which is too large to fit into 
available memory (disc only). 

o Finish an EDIT session. 

o Assign the tab function to the key with ASCII 
value n. (Default setting FIELD 9.) 

o Turn the facility to ignore case on and off with 
SEARCH, CHANGE and REPLACE. With no 
parameters, FOLD tells you the current status. 

Format the whole document in memory. 

Load the specified file into memory replacing what 
was there previously (disc only). For example: 

LOAD RESIGN 

o Enable microspacing. 

233 



MODE (M) 

MORE (MO) 

NAME (N) 

NEW 

PRINT (P) 

PRINTER (PRINTE) 

QUIT 

READ (RE) 

REPLACE (R) 

SAVE (SA) 

SCREEN (SO 

234 

Switch the computer into the specified screen 
mode. For example: 

MODE 132 

o Continue an editing session . 

Name (or rename) the file in memory. For example: 

NAME JULY12 

Clear the text from memory. 

Print text onto continuous stationery. PRINT (P ) 
by itself prints the text in memory; with filenames 
it prints the contents of those files. 

o Load the specified printer driver into memory. For 
example: 

PRINTER EPSON 

o Abandon an EDIT session. 

Read a file onto the end of the document in 
memory. May be used to read a file into a document 
at a point indicated by a marker. For example: 

READ INDEX 1 reads file INDEX into the current 
document at the point indicated by 
marker 1. 

Find all occurrences of one string and request the 
user to confirm replacement with another. For 
example: 

REPLACE FAT ROTUND 

Save the text in memory with the specified name. 
For example: 

SAVE MY-CV saves the current file with the name 
MY-CV; 

SAVE saves the current file with its current 
name. 

Display the text on the screen as it will appear 
when printed. For example: 

SCREEN LETTER displays the file LETTER; 
SCREEN displays the file in memory. 



SEARCH (S) 

SHEETS (SH) 

SETUP (SET) 

WRITE (W) 

Stored commands 

Search the text for the specified string. For 
example: 

SEARCH dog 

1 CTRL 1+1 f, 1 (NEXT MATCH) to find subsequent 
occurrences. 

Print the text pausing between pages for the user 
to feed in the next sheet of paper. For example: 

SHEETS BOOK prints file BOOK; 
SHEETS prints the file in memory. 

Set any or all of the text screen flags, for example: 

SETUP FI selects formatting and insertion, but not 
justification. 

Write text to disc or cassette using the specified 
filename. This is slower than SAVE but can be used 
with markers, for example: 

WRITE PORTION 1 2 saves the section of the 
current document between 
markers 1 and 2. 

These commands are used in the text screen and are placed in the command 
margin by using ISHIFTI+I f8 I (EDIT COMMAND). 

CE text 

RJ text 

LJ text 

DH 

DF 

HE ON/OFF 

FO ON/OFF 

DM m 

EM 

SR l v 

0 

0 

0 

0 

0 

0 

0 

Centre text between the left and right margins. 

Right justify text, i.e. aligns it to the right margin. 

Left justify text, i.e. aligns it to the left margin. 

Define page header. 

Define page footer. 

Switch printing of page headings on or off. 

Switch printing of page footers on or off. 

Define the start of macro m. 

End macro definition. 

Set register l to value v. 

235 



PS ON/OFF 

PL 11. 

TM 11 

HM n 

FM n 

BM n 

LM n 

L5 n 

T5 ON/OFF 0 

PE 

OP 0 

EP 0 

HT - / * n 0 

236 

Switch page breaks on or off (default ON) . 

Set page length to n lines (default 66) . 

Set top margin to n lines (default 4). 

Set header margin to n lines (default 4). 

Set foot er margin to n lines (default 4). 

Set bottom margin to n lines (default 4). 

Set left margin for printed output to n spaces 
(default 0). 

Set line spacing - causes n blank lines to be prin ted 
between each line of t ext. 

Switch two-sided printing on or off. 

Page eject. PE n may be used to perform a page 
eject if n is greater than the number of lines 
remaining on the current page. 

Odd page i .e . give one page eject if on an even 
numbered page, two if on an odd numbered page. 

Even page i.e. give one page eject if on an odd 
numbered page, two if on an even numbered page. 

Set highlight character to n . 



AppendixJ 

ViewSheet Commands 
Most commands may be abbreviated to their first few characters. Where 
applicable, the minimum abbreviation is given in brackets after each command 
name. 

Commands marked 0 apply to facilities for which detailed descriptions are 
outside the scope of this guide. Full details may be found in the ViewSheet User 
Guide. 

Note that operating system and filing system commands can be issued from the 
ViewSheet command screen. 

CREATE (CR) 

HEADINGS (H) 

HEADINGS OFF 
(H OFF) 

HEADINGS ON 
(H ON) 

LOAD (U 

LW 

MODE n (M) 

NAME (NA) 

NEW 

PC 

PRINT (P) 

o Create a disc file for use by READ and WRITE 
within the sheet. 

o Indicate if user-defined headings are set. 

o Switch off user-defined headings. 

o Switch on user-defined headings. 

Load the specified file into memory, replacing what 
was there previously. For example: 

LOAD BUDGET 

Load the specified file of window definitions. 

Set the screen mode specified in n. For example: 

MODE 131 

Assign the specified name to the sheet in memory. 
For example: 

NAME WAGES2 

Create a blank worksheet. 

Print out the contents of every occupied slot, with 
coordinates. 

Print out the sheet in memory. 

237 



PRINTER (PRINTE) 

PROTECT (PRO) 

PROTECT OFF 
(PRO OF) 

PROTECT ON 
(PRO ON) 

SAVE (SA) 

SCREEN (SO 

SW 

238 

Load the specified printer driver into memory. For 
example: 

PRINTER EPSON 

Indicate if protection is enabled or disabled. 

Disable protection. 

Enable protection. 

Save the current sheet under the specified 
fllename. For example: 

SAVE SUMS saves the current sheet with the name 
SUMS; 

SAVE saves the current sheet with its 
current name . 

Display the sheet in memory with current print 
windows. 

Save a file of window definitions. 



AppendixK 

Technical information 
Tape recorder leads 

A variety of different leads may be used to connect a tape recorder to the 
computer. In the diagrams below, the numbered connections refer to DIN plug 
pins, viewed towards the plug's solder terminals: 

1 

3 pin DIN 

COMPUTER 

7 pin 

DIN 

3/5 pin 
DIN 

5 3 

',0 
1 

5 pin DIN 

50~ . 7 
2 • 

• • • 
4 6 

1 

7 pin DIN 

TAPE RECORDER 

7 pin 

DIN 

3/5 pin 

DIN 

(motor control not possible) 

7 pin 

DIN 

7 pin 

DIN 

2.5mm 
jack 

3/5 pin 

DIN 

2.5mm 
jack 

3.5mm 
jack 

3.5mm 
jack 

239 



Connector pin assignments 

The pin assignments for the connections on the rear of the computer are shown 
in the diagrams below. Each view is towards the socket, from outside the 
computer's case. 

RGB 

RS423 

CASSETTE 

ECONET 

ANALOGUE IN 

240 

-Sv 

:C)ed ~v 
• • 
• : . .. gre-en 

sync 
blue 

0v 

RTSO. dolo 
In 

• 
(TS • • data 

ou l 

~OO~?;:o 
• • output 

• • 
input •• 1 1 .. ou pu 

0v 

CIOCkOdOlO • • 
• • clock • data 

0 v 

Analogue Analogue Gnd 

6 SOl • • 
4 .:. 2 

3 

C E(!)A • • 
• 

• • o B 

307 

•• 6 1 . . 
5 • • t. 

• 
2 

'0 . . 
5 ... " 4 

2 

Gnd CHI 0v CH3 0v ~ <5v 

"-
CH0 VREF PB0 CH2 VREF PBI LPSTB 



Me mory map 

,-------,. 8.F FFF 

n rl 

MOS 
ROM 

(16K) 

Up to 16 x16K pages 0/ sideways RO "' / Rl>.M -

(4 pages RAM and 7 pages RO M fitted) 

scrE'e n memory 

HIM EM - -- -- - ----- -

BASIC stock 

~ 

< moveable 

boundaries 
32K normal 

RAM 

t 
storage 10 ' 

LOM EM- variables 
- - - ------ -

TO P~ 

user"s BASIC 
program O r1? O 

PA GE -
usPd by MOS 

&FOOO 

8.EOOO 

8.0000 

81:000 

&B OOO 

& AOOO 

8.9000 

MOOO 

&7000 

&6000 

& 5000 

&.00 0 

& 3000 

&2000 

&1000 

& 0000 

12K RAM 

used by MOS 

- - - - -

shadow 
memory 

(20K) 

241 



Replacing the internal battery 

REFER TO THE HEALTH AND SAFETY INSTRUCTIONS AT THE FRONT 
OF THIS GUIDE BEFORE ATTEMPTING TO REMOVE OR REPLACE THE 
INTERNAL BATTERY. 

The Lithium cell fitted in your computer is used to maintain the content of the 
CMOS RAM at all times when the computer is disconnected from the mains 
power supply. 

Under normal operating conditions, the life of the cell can be expected to be well 
in excess of one year, but annual replacement is recommended to ensure 
absolute reliability. Replacement cells can be obtained from your supplier -
note that standard alkaline batteries are not suitable for this application. 

Removing or replacing the battery will corrupt the current content of the 
CMOS RAM and it is recommended that a copy of the settings is first written to 
either tape or disc. This can be achieved in the following manner; 

Select the appropriate filing system and load a cassette or appropriately 
formatted disc; 
Type: 

MODEIil lRETURNl 

*SPOOL CONFIG lRETURNl 

*STATUS lRETURNl 

The computer will display (and store) a list of the current CMOS RAM settings. 

Close the spool file by typing: 

*SPOOL l RETURN I 

To replace the internal battery, proceed as follows: 

disconnect the computer from the mains supply; 
remove the computer's top cover by unscrewing the four screws labelled FIX 
(located on the computer's underside); 
locate the battery nest (shown in the illustration below); 
remove the existing cell and replace it with the new cell, ensuring correct 
polarity by reference to the + and - markings on the battery's casing -
dispose of the old cell sensibly; 
replace the computer's top cover; 

The CMOS RAM may then be restored to its former state in the following 
manner: 

connect the computer to the mains supply and execute a power-on reset, i.e . 
switch the computer on whilst holding down the R key. Keep the R key 
depressed until the message: 

242 



CMOS RAM reset 

press BREAK to continue 

appears on the screen. 

internal 
speake r 

8 

Lithium ce ll 

ENSURE CORRECT POLARITY 

cartridge ROM 
sockets 

press 1 BREAK 1 and manually reselect the filing system used to store file 
CONFIG (as above): 

For CFS: 
For DFS : 
For ADFS: 

press 1 CTRL 1+ T +1 BREAKI 

press 1 CTRL 1+ D +1 BREAKI 

press 1 CTRL 1+ F +1 BREAK 1 

select the BASIC language, select MODE 0 and then display the content of 
file CONFIG, i.e . type: 

*BASIC !RETURN! 

MODE0 IRETURN! 

*PRINT CONFIG !RETURNI 

use the information from the screen display as parameters to a sequence of 
*CONFIGURE commands (see Appendix C). You will, of course, have to 
reset the date and time using either TIME$ (as described on page 98) or the 
Control Panel utility. 

243 



Initial configuration 

You may wish to configure your computer to its initial state (if, for example, the 
machine has lost the standard configuration during transit). The procedure is 
as described below: 

- execute a power-on reset as described on page 242. In this case, however, 
press: 

I CTRL 1+<space>+ IBR .... 1 

rather than merely (BREAK) on its own. The screen should show: 

Acorn MOS 
Thi s is not a language 
*-

- now enter the following, pressing IRETURNI at the end of each line: 

*CONFIGURE BAUD 4 
*CONFIGURE NOBOOT 
*CONFIGURE CAPS 
*CONFIGURE DATA 4 
*CONFIGURE DELAY 50 
*CONFIGURE NODIR 
*CONFIGURE INTUBE 
*CONFIGURE FDRIVE 3 
*CONFIGURE FILE 15 
*CONFIGURE HARD 
*CONFIGURE IGNORE 10 
*CONFIGURE LANG 12 
*CONFIGURE MODE 7 
*CONFIGURE TUBE 
*CONFIGURE LOUD 
*CONFIGURE PRINT 1 
*CONFIGURE REPEAT 10 
*CONFIGURE SCROLL 
*CONFIGURE TV 0,1 

now press I CTRl I + IBREAKJ 

The screen should show: 

Acorn MOS 
BASIC 
>-

Your computer is now in its injtial configuration although you will need to 
reset the date and time as described on page 98 . 

244 



Write protecting the Welcome disc 

Unlike most software s upplied by Acorn Compute rs, the Welcome disc supplied 
with the computer is not protected with a wri te-protect tab (which ensures that 
the software and data on the disc is neither overwritlen nor deleted). This is to 
a llow the disc to be reconfigured, where necessary, for use with a n SO-track disc 
unit. 

It is recommended that t he disc be wri te-protected as soon as possible: 

- users with 40-t rack disc uni ts may a fi x a wri te-protect tab before t he disc is 
used; 

- users with SO-track disc units should a fi x a wr ite protect tab only after the 
first use (ie after s ta rting the Welcome seq uence by typing 
CHAIN"WELCOMES0" , which reconfigures the disc for subsequent use in 
SO-track disc units). 

The CONVERT utility 
It is sometimes the case that software which works correctly on a BBC 
Microcomputer Model B or B+ will not work on this computer. The reason for 
this will usua lly be found in the way in which the software is written. Because 
of the need for extra space or a non·standard operation, software authors may 
use a reas of memo,'y not normally provided fo r t hem. It may a lso be lhe case 
that the software relies upon a specific hardware feature, peculiar to only one of 
the BBC Microcomputer range. 

The CONVERT utili ty supplied on the Welcome tape and disc can often help in 
such cases by intercepting certain types of routines known to be used in some 
software. The routine is located at the end of side two of t he Welcome tape and 
in the Welcome disc Library - it is called by a BASIC program as follows: 

*BASIC 
CHAIN"CONVERT" 

*ADFS 
*BASIC 
CHAIN"CONVERT" 

CONVERT occupies one of the 16K banks of sideways RAM and will remain 
active until the machine is switched off. 

It is inevitable, however, tha t some software will still fa il to work even when 
CONVERT is used. 

245 



BAS128 

The disc-based version of BBC BASIC (which provides access to a full 64K of 
memory) is provided towards the end of side two of the Welcome tape and in the 
SO-track library on the Welcome disc. The loading procedure is as described 
below: 

*RUN BAS128 

For SO-track discs (con figured using CHAIN"WELCOME80"): 

*ADFS 
*BAS128 

Users of 40-track discs should first copy BAS12S from tape to disc using the 
following procedure: 

- load the Welcome tape so that side two is ready to be played and wind 
through approximately half of the tape. 

- load a formatted DFS or ADFS disc and type: 

*MOVE -TAPE-BAS1 28 -DISC-BAS128 (for DFS-format discs) 

or 

*MOVE -TAPE-BAS1 28 -ADFS-BAS1 28 (for ADFS-format discs) 

- wait for the normal prompt to reappear, indicating that BAS128 has been 
transferred. 

BAS128 may then be loaded from the disc when required , using either: 

*DISC 
*BAS128 

or 

*ADFS 
*BAS128 

(for DFS-format discs) 

Ifor ADFS-format discs) 

BAS128 provides all the functions of BASIC IV with the exception of: 

- the LIST IF command; 
- the EDIT command; 
- access to the CMOS clock/calendar via TIME$. 

Technical information relating to BAS128 can be found 10 the Reference 
Manual. 

246 



Index 

accuracy 38 
acoustic coupler 174 
actua l colour 93 
ADFS 18,27,150, 158,212 
ADFS utilities 216 
Advanced Disc Filing System 18,27, 

150,158,212 
Advanced Network Filing System 28 
ADVENTURE 21 
aeria l lead 4 
alpha-numeric keyboard 6,7 
'ana logue in' socket 178,240 
AND 76 
ANFS 28 
AQUA 21 
arc 23 1 
array 84 
arrow keys 6,9, 11 0,131. 168 
ASC 61 
ASCII character set 12, 184 
ASCII code 61,77,80,96, 164 
assembler 99 
assembly language 99 
AUTO 41 
auto-boot 25 
auto-entry 141 
auto-repeat 6,14 ,131 
auxiliary power output 17 

b lbleepl 11 9 
backgrou nd colour 52,95,181 
ba r chart 149 
BAS 128 99,246 
BASIC 13,34 
BASIC keywords 218 
BASIC program fil e 164 
baltery nest 242 
battery replacement 242 

baud 27 
BBC BASIC 18,34 
block 151 
block operatIOn 113,172 
boot option 25 
BREAK key 8 
break key lock 9 

C 180 
CALL 100 
Cambridge Lisp 180 
caps lock indicator 7 
cartridge ROM 150.152 
Casselle Filing System 18.27,150. 

151.206 
casselle lead 3. 15.239 
cassette recorder 15 
cassette socket 15.240 
CASTLE 19 
CEEFAX 11 ,94,178 
centreing text 121 
CFS 18.27. 150. 151,206 
CHAIN 18 
CH ANGE 115 
changing the range of colours 92 
changing the time 26,98 
channel number 87 
character design 92 
character sets 12.181.184 
CHARDES 92,101 
chip 153 
CHR$ 62.95 
circle 31,231 
CLG 48 
CLOUD 20 
CLOWN 19 
CLS 35 
CMOS RAM 23, 150. 167.242 

247 



co· processor 28, 175, 179 
('o-processor options 28 
COLOUR 55.92 
colour monitor 176 
colour number 93, 18 1 
command screen 106, 131 
concatenation 79 
condi tions 75 
connector pi n assignments 240 
control key 8 
control key depressions 15.190,227 
control panel 23 
control panel layout 24 
CONVERT 245 
copy cursor 40 
COpy key 9,40,172 
CTRL 8 
cursor 9, 107, 131 
cursor control keys 6,9, 11 0.13 1,168 
cursor editing 40, 198 

DATA 83 
data fil e 86 
database 32 
date 26,126 
day 26 
DBASE 32 
default language 26 
DEFFN 69 
DEFPROC 64 
DELETE 42 
DELETE key 8 
descriptive mode 167 
DFS 27, 150,153,208 
DIM 84 
directory 156, 161 
directory cata logue 163 
disc catalogue 155,158 
Disc Filing System 27,150, 153,208 
disc type 25 
disc unit 17,176 
displaying a directo)'y catalogue 163 
displaying a disc cata logue 158 
double height character 95 

248 

double spacing 27 
double·sided disc unit 154 
DRAW 65 

Econet 150 
Econet socket 240 
EDIT 165 
EDIT screen 166 
ed iting line 132 
Ed itor 164 
Elite 46 
ell ipse 31,23 1 
ELSE 74 
END 64 
End Of File 88 
cnd of fil e marker 164 
ENDPROC 64 
ENVELOPE 102 
ENVELOPE 97 
EOF 88 
ERL 78 
error handling 78 
error message 78 
ESCAPE key 8 
externa l connectio ns 175 

field 56 
fil e 86, 150 
fil e server 28 
fil ena me 113,125, 155, 159 
filin g system 150 
filin g system command 206 
flashing colours 95,181,198 
flood fi ll 31,52,23 1 
floppy disc 17,150, 154 
FN 69 
font 29, 101 ,199,200 
footer 127 
FOR. .. NEXT 70 
foreground colour 52, 181 
formula 128, 133,143 
FORTRAN 77 180 
fthell 11 6 
function 68, 148 



function key 6,9,43 
function key definition 14.43,203 

GCOL 49,89,92 
GET 61 
global operation 117 
global variable 67 
graphics 10,47,89 
graphics cursor 48 
graphics mode 47 
graphics window 58 

ha rd break 8 
header 127 
hexadecima l 90,100,104,152 
hierarchical direcLory structure 159 
high-resolution graphics 49 

IEEE interface 179 
IF 144 
IF ... THEN 74 
immediate command 108 
lNKEY 61 
INPUT 37,60 
INPUT LINE 61 
insert mode 168 
lNSTR 81 
integer variable 38 
internal batte,·y 242 

joystick 21 ,178 
justification 108,111 

KEYBOARD 20 
keyboard 6 
keyboard codes 190 
keyboard insert 10 
keyboard status 26 
keyword 34,164,218 
keyword mode 167 

label 128, 132 
LEFT$ 81 
LEN 68,80 

library 15£, 163 
linefeed 27,177 
line number 35,41 
LIST 35,72 
LIST IF 42 
LlSTO 72 
Lithium cell 242 
LOAD 109, 134,150 
local variable 66 
LOG 35 
lookup table 149 
loops 70 

machine code 23,99 
machine configuration 244 
machine operating system 12 
macro 126 
margin s top 108 
marker 114,123 
Martyn Gilbert 11 2, 120 
memory map 24 1 
menu 29,76 
MID$ 8 1 
minimum abbreviation 42 
MODE 48,106,130 
mode 25,47, 103,167, 181 
mode characteristics 181 
MODES 19 
modem 174 
monochrome Inonitol' 176 
MOS 12,13,192 
motor control 16 
mouse ]79 
MOVE 48,65 
multiple choices 76 

NAME 124 
nested loops 71 
network 28 
NEW 36,100 
number 128 
numeric array 85 
numeric key pad 6,9 
numeric variable 60 

249 



OLD 36 
ONERROR 78 
ON ... PROC 77 
OPENIN 88 
OPENOUT 87 
operating system commands 13,192 
OR 76 
Oracle 11 ,94, 178 
OSBYTE call 197 
overtype mode 168 
overtyping 110 

page eject 126 
page length 125 
palette 29 
PANEL 23 
PANOS 180 
paraUel printer 177 
parameter 66 
parent directory 162 
Pascal 180 
pathname 161 
pattern design 103 
PATTERNS 20 
peripherals 175 
PFlLL 90,103 
PLOT 50,231 
PLOT code 231 
point 231 
power indicator 7 
power-on reset 242 
Prestel Adapter 178 
PRINT 34,125,147 
print formatting 56 
PRINT TAB 54 
print window 147 
printer 125,177 
printer driver 125,126,147 
printer driver generator 126,147 
printer options 27,198 
printer server 28 
printing 53 
printing from VIEW 125 
printing from ViewSheet 147 

250 

printing text at graphics positions 59 
printing text in colour 55 
PROC 64 
procedure 63 
procedure call 64 
program name 44 
prompt 11 ,35 
PROTECT 138 
protection 138 

RAM 150 
READ 83,109 
read-only memory 13 
read/write head 154 
real variable 38 
recalculation 137 
rectangle 231 
Reference Manual 2 
REM 42 
RENUMBER 36,42 
REPEAT ... UNTIL 72 
replication 141 
replication, absolute 143 
replication, relative 143 
REPORT 78 
resident integer variable 39 
RESTORE 83 
RETURN key 8 
RFS 27,150,152,208 
RGB 176 
RGB socket 240 
right justification 122 
RIGHT$ 81 
RND 71 
ROM 13 
ROM Filing System 27,150,152,208 
root directory 159 
RS423 interface 27,174 
RS423 socket 240 
ruler 108,117 
RUN 35 
running the Welcome programs 18 

SAVE 113,150 



saving and loading programs 44 
SCREEN 121 
screen display 10 
screen mode 10 
screen window 148 
scroll 173 
scroll protect option 25 
sector 154,23 1 
segment 231 
serial printer 177 
shadow memory 200 
shadow screen 10,20 
SHAPES 19 
sheet screen 131 
SHIFT key 7 
shift lock indicator 7 
single-sided disc unit 154 
slot 128,132 
slot format 140 
slot range 136,143 
slot reference 136 
soft break 8 
SOUND 97 
sound 97,102,202 
sound channel 97 
sound generator 97 
sound option 28 
spreadsheet 128 
SQR 35,69 
STEP 70 
stored commands 121 ,125,235 
stored command margin 121 
STR$ 81 
string 39,79 
string array 85 
string variable 39,60 
STRING$ 81 
structured programming 62 
subordinate directory 159_162 

TAB below words 169 
TAB columns of8 169 
TAB key 8 
TAB stop 119 

technical informalion 239 
Telesoft Filing System 178 
Teletext Adapter 178 
Teletext character sel 12,186,188 
Teletext conlrol code 11 ,94 
Teletext graphics 96 
Teletext mode 94 
Terminal emulator 174 
text coordinale 54 
text file 164 
text screen 107 
text window 57 
TFS 178 
TIME 26,73 
time 26,126 
TIME$ 98 
TIMPAlNT 29 
token 164 
tone and volume settings 16 
track 154 
Trackerball 179 
triangle 231 
Tube 179,180 
tuning the lelevision 5 
TURTLE 20 
twin double-sided disc umt 155 
twin single-sided disc unit 154 

UHF socket 4 
user port 179 
user ROM cartridge 153 
user-defined character 12,90 
Utility programs 101 

VAL 82 
value 133 
variable 37 
variable name 37,38 
VDU 62,89,90,91 
VDU code 227 
VDU command 57 
VDU driver 227 
vertical screen alignment 24,201 
VIEW 105 

251 



VIEW commands 233 
View family 130 
ViewSheet 129 
ViewSheet commands 237 

Welcome programs 15 
Welcome utilities 22 
wildcard 127,208,212 
Winchester disc 150,159,177 
window 136,166 
word processing 105 
wrap around 25 
write cursor 40 
write protection 245 

Z80 second processor 180 

!BOOT 25 
# 208 
$ 156,159 
% 39 
, 9,13,35,133,208 
'ADFS 158 
' BACK 162 
"BASIC 13 
"CAT 158,163 
' DIR 156,161 
"DRIVE 155 
'EDIT 165 
"FX command 14,177,197 
' KEY 14,43 
"LlB 158,163 
"MOTOR 16 
' ROM 152 
"ROMS 13 
"RUN 23,153 
"SHEET 13,130 
' TAPE 151 
' TERMINAL 174 
'TIME 13 
' WORD 13,106 
+ 79 
. 155,157,161 
, 9,35,133 

252 

128K BASIC 99,246 
1MHz bus 177,178,179 
32016 co-processor 180 
32016 second processor 180 
6502 second processor 179 
65C102 co-processor 179 
: 62 
< 79,108 
= 79 
> 11 ,35,79,108 
@ 162 
@% 39,57 
• 162 

BP" Sml5I90 



Acorn 
The choice of eXflCrience: 

Acorn Computers Limited 
Fulbourn Road 
Cherry Hinton 
Cambridge CBI 4JN 
England 


