5-34 — elektor may 1979

BASIC microcomputer

BASIC microcomputer

A SC/MP uP with BASIC interpreter

It seems safe to assume that the
‘BASIC microcomputer’ is the
cheapest home-construction
computer ever described that can
be programmed using a higher
programming language.

The SC/MP is a popular and
readily-available microprocessor.
Two further good reasons for
using it in this microcomputer are
that it can readily be incorporated
into the Elektor SC/MP system,
and that a Tiny BASIC interpreter
for this uP is available in ROM
(Read Only Memory).

The BASIC computer card
described in this article contains
three circuits that can be used as
more or less independent units.
The processor section is a fully
buffered and self-contained ‘CPU
card” with provisions for DMA
(Direct Memory Access) and
multiprocessing.

The memory section is also fully
independent, and contains the
BASIC interpreter (NIBL-ROM)
and the address decoder.
Communication with the ‘outside
world’ (the Elekterminal, for
instance) is taken care of by the
third section: the interface.

To be fully operational, the
computer requires at least one 4K
RAM card (RAM = Random
Access Memory), as described in
Elektor, March 1978. The basic
BASIC computer therefore
consists of not more than two
Eurocard-sized printed circuit
boards!

The main advantage of a higher pro-
gramming language is that there is no
need to know the exact details of how
the ‘inside’ of the computer works. A
minor disadvantage is that a more so-
phisticated in- and output unit (‘ter-
minal'} is required, with an alphanu-
meric keyboard. In other words, a key-
board that is similar to that of a type-
writer. Furthermore, 2 serial data flow
(‘bit by bit’!) between computer and
terminal is normally required. The Flek-
terminal with ASCII keyboard {Elektor,
November and December 1978) meets
these requirements, and this unit or a

Figure 1.
INS 8060.

Functional block disgram of the

Figure 2. Block diagram of the BASIC mi-
crocomputer/CPU card.

1

ot W ot

DUTPUT AODRESS
tHERE

PROGRAMCONNTER
(L1

POMTER REGEETEN Y
ik

WRHTE BUS (MGHE

MEAD DS (G H}

PUMTER RECISTER 2
L

it
WEREMENTER

xit (] 0stiL1ator
i S,

THANG CIN.

GATING AND
FURETION
CONTROL

[3=F

e o D R

R8T DATA KA

QUTHIT ADORESS
how

PROGAAM COUNTER w0
E waw i =<3
3 POINTER REGISTER 1 #
2 wow 2
-
'i' PONTER AEGISTER 2 2
ILow] e
POWTEN REGITER)
Low

W TRANSFER
l I AND SINFT I l

BASIC microcomputer

elektor may 1979 — 5-36

similar terminal must be used in con-
junction with the BASIC computer.
Programming in BASIC is easily learned,
but it is not so easy to explain all the
details in a few pages. For this reason,
no attempt will be made in this article
to explain how to program in NIBL
(National’s Industrial BASIC Language).
The BASIC course, which started in the
recent March issue of Elektor, must suf-
fice. It explains BASIC in general and,
as required, deals with NIBL in particu-
lar. Obviously, it was written with this
BASIC microcomputer in mind!

For this article, software is a side issue.
The primary concern is the microcom-
puter hardware.

However, as stated at the outset: if the
aim is to program in BASIC, there is no
real need to know how the computer
works. Most of the following article
would therefore appear to be super-
fluous: certainly if one has some expe-
rience in programming in BASIC, the
components can simply be mounted ofl
the board and, (after a quick glance at
the summary of NIBL statements and
commands) everything’s ready to roll.
However, NIBL not only offers the pos-
sibility of programming in (Tiny)
BASIC; it also provides for immediate
addressing of the hardware. For this rea-
son, it can be useful to know a little bit
about the actual circuit...

Bird's-eye view of the CPU

The SC/MP (Simple Cost-effective Micro
Processor) is an 8-bit uP, with all essen-
tial functions integrated on a single
chip. As is apparent from the block dia-
gram (figure 1), the SC/MP (type num-
ber INS 8060) contains four 16-bit
registers: the program counter and three
pointer registers. These ‘pointers’ play
an important part in the (auto-) indexed
addressing of the memory and input/
output units.

The (8-bit) extension register is of par-
ticular interest, since it offers a serial in-
and output facility with a minimum of
fuss. The cassette interface in the Elek-
tor SC/MP system makes full use of this
possibility. A UART (Universal Asyn-
chronous Receiver/Transmitter), as used
in the Elekterminal, can also be made
redundant by utilising the SIN and
SOUT connections.

The status register can also be used for
serial transfer of data. The three ‘flag’
connections can be used as outputs;
‘sense A’ and ‘sense B’ are both serial
inputs. In fact, NIBL uses Flag 0 and
Sense B as serial data out- and input re-
spectively.

The INS 8060 can address 64k bytes of
memory. This requires 16 address lines,
12 of which are brought out direct via
pins of the IC. The four remaining

2
71 A
'/ :

MSB’s (Most Significant Bits) are ap-
plied to four lines on the databus during
the NADS (Negative Address Data
Strobe, on pin 39). If these four bits are
left unused, the SC/MP can address only
4096 bytes of memory. This 4K mem-
ory is called a ‘page’; the four MSB’s can
therefore be used to address 16 pages of
memory. The SC/MP will not, of its
own accord, ‘turn to a new page’. This
requires an explicit instruction in the
program. When programming in BASIC,
nothing could be simpler: for example,
the ‘statement’ PAGE = PAGE + 1
causes the uP to proceed to the next

page.

DMA and multiprocessing

The SC/MP has an extremely useful fa-
cility, absent in many other uPs: all the
outputs used for writing into memory
etc. employ so-called Tri-state logic.
This means that they can not only be
made ‘hard’ logic 1 or @; a third state is
also possible, where the outputs are
‘floating’ with a high output impedance.
In this third state, the processor no
longer has any effect on the address-
and databus: as far as any other units
are concerned it is no longer ‘on-
line’! Another microprocessor can then
take over (multiprocessing), or a ter-
minal can be used for immediate access
to the memory. The latter option is nor-
mally referred to as DMA, for Direct
Memory Access. It is not really the in-
tention that the (human) operator
should proceed to ‘walk around inside
the memory’; the main advantage of
DMA is that it can save a considerable
amount of (computer-) time when trans-
ferring large blocks of data from the
memory to peripherals — floppy disc,
for instance.

Instruction set

The SC/MP recognises 46 instructions,
divided into nine groups; these instruc-
tions can be used in up to five different
addressing modes. A detailed descrip-
tion of the complete instruction set,
with all its variation capabilities, is way
outside the scope of this article. It
would require pages and pages (both
magazine and human memory) and,
moreover, it would be rather pointless.
After all, this computer can be pro-
grammed in BASIC!

Detailed information is provided by the
manufacturer, in the documentation
listed at the end of this article. This not
only explains the instruction set, but
also contains full details on how to pro-
gram in machine language and provides
detailed technical information.

Block diagram

The BASIC card consists of three rela-
tively independent sections. In fact, it
doesn’t really do justice to this design to
call it a “BASIC card’, since its uses are
by no means limited to a mere BASIC

5-36 — elektor may 1979

BASIC microcomputer

3

ica
BILSS7

’k Ba y e
5V
®
L } Ics d "0
81LS97 E
8 1 B 8|1 "

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sv |
o |
I
|
LY P— AD 7 ADS-AD11S, Fy Fy Fo Izu I
EE B W[22] 21] | 23] M] |
12c 15¢c Ma Il
|
X 3 5a |
A7 2 N7 5| o2 o ‘-I!L[l
~ 5V |
C 1zicad 172 1c2 5 '
L a |
& 13c
5| Ne L EEReEe S5 sin |
C P | D1-D4sDUS

| #see text
22¢ t
ADS —m e AD 16 i
|

- | RS232C
? ‘f Processor .._=_.. N 24
[J]o8888338d864° e
“om m M= C1 IC2 IC3 ICA ICE ICE IC7 IC8 co IC10 iC11 PEcais =W ala e,
? vilhalt abh .
—

... N8=IC8 = 74LS00

computer. Right from the start, the in-
tention was to produce a design with a
minimum component count and maxi-
mum flexibility for different applica-
tions. The final result is all that we had
hoped for.

The BASIC card is virtually a complete
microcomputer: only the program mem-
ory must be added. The minimum mem-
ory requirement is 2048 bytes (suffi-
cient for approximately sixty program
lines), or half a 4K RAM card (EPS
9885). Obviously, any other ‘memory’
with the same capacity (or more) will
do instead.

As illustrated in the block diagram (fig-
ure 2), the p.c. board contains three dis-
tinct sections. The most important of
these is the processor section, consisting
of the CPU and associated buffer cir-
cuits for the address bus, data bus and
the main control signals. These buffer
circuits make it possible for the CPU to
work with extensive memory and peri-
pheral systems. In short, this section is
the ideal heart of a larger system.

A small but useful extension of the pro-
cessor circuit is the RS232C/V24 inter-
face. This section is connected to the
processor’s flag @ output and sense B
input, which are used as serial out- and
input both in NIBL and in various other
applications. For instance, this interface
opens the possibility of connecting the
unit direct to a terminal or teletype.
The processor can itself take care of the
necessary conversion from parallel to
serial data format and vice versa — if the
necessary software is available, that is.
The saving in cost of hardware is well
worth the additional processor-time re-
quired for this conversion.

The third and last section on the BASIC
card is the Read-Only Memory. The
complete NIBL-BASIC interpreter is
supplied in a single so-called maxi-ROM.
With its 32 Kbit (4096 bytes) memory
capacity, this IC represented the abso-
lute limit in Large Scale Integration
(LSI) until quite recently, when a ROM
with a 64 Kbit storage capacity was an-
nounced . . . It is to be expected that we

will see ever larger ROMs appearing for
some time to come.

The inputs to the ROM represent a neg-
ligable load on the address bus, so there
is no need to add buffer stages at this
point. The ROM outputs, however, have
a very low drive capability; for this rea-
son, an output buffer is required.

The advantage of the system outlined
above is that the processor and ROM
sections are fully independent units. Al-
though both are mounted on the same
p.c. board, their only means of commu-
nication is via the general system bus —
the same bus that is used for communi-
cation with any other part of the sys-
tem. This means that it is possible, for
instance, to fully utilise the processor’s
capabilities in a particular application
where the ROM is not required.

The circuits

The circuits of the processor section and
the associated RS232C/V24 interface
are given in figure 3.

BASIC microcomputer

elektor may 1979 — 5-37

Figure 3. The processor section with input/
output interface. This section can also be used
as fully buffered CPU card.

Figure 4. Flow diagram of the initial check
procedure that precedes each read or write
cycle.

Figure 5. Pulse diagram of the main control
signals within the BASIC microcomputer.

The interface does two jobs. In the first
place, the TTL logic level at the flag @
output of the processor must be con-
verted to RS232C/V24 level. This
means that logic 1 must be at least +5V
and not more than +15V; similarly,
logic) must be some level between —5V
and —15V. As in the Elekterminal, the
logic levels chosen in this circuit are
+5V for logic 1 and —12V for logic § —
for the simple reason that these levels
correspond to common supply voltages.
The fact that they are asymmetrical
with respect to OV has no effect on the
realibility of data transfer.

The flag @ output of the processor
drives transistor T1;in turn, this transis-
tor switches a current source (consisting
of T3 and a few resistors and diodes).
The advantage of using a current source
at the output is that it is short-circuit
proof. Furthermore, it then becomes re-
latively easy to obtain a low output im-
pedance, as required by the RS232C/
V24 standard. Should a standard TTL
level output be required for some appli-

INITIATE INPUT OUTPUT CYCLE
(INSTRUCTION FETCH DR
MEMORY REFEREN
INSTRUCTION EXECUTION)
INBREQ SERVES AS NO
INFUT FOR THIS STER q
o e g riattie Lad®) o win®
NERED IS PULLED T0 Ve
o R,
NBREQ and NENIN Processing Sequence 79075-4
) b))
144 READ-CYCLE — WRITE-CYCLE
NBREQ/NENIN
b)) s) g,
L W
s u U
))
5 g 8%
NRDS
-) |))
wu 149
NWDS
)) b)) .
L88 149
NENOUT I-l | I
))
{8 4%
OUTPUT N6
DATABUS % LAY (e,
W = write /// 4 // w V 57
R et %E‘)‘“E‘% wle 7 AN, 2288
78075 5

cation, it is sufficient to add one extra
diode (D4). Logic @ will then corre-
spond to —0.6V (and logic 1 remains
+5V); the interface circuit is then a
short-circuit proof TTL output buffer.
The second thing the interface must do
is limit the logic levels at the sense B
input of the processor. This is easily ac-
complished by T2 and D3; R14 limits
the input current to a comfortable level.

The basic principles of the processor
section have already been explained.
However, some further explanation of
the circuit is called for — particularly
where the Direct Memory Access and
multiprocessing facilities are concerned.
The CPU, or Central Processor Unit,
(IC1) receives clock pulses from an inter-
nal oscillator, with an external crystal to
determine the frequency. From this
clock signal, the NRDS (Negative Read
Data Strobe) and NWDS (Negative Write
Data Strobe) are derived.

The address and data outputs of the
CPU have a limited drive capability. For

' this reason, the address bus is buffered
by IC2 and IC3; similarly, IC4 and IC5
are included as databus buffer. These
four ICs have an interesting feature: the
input circuits incorporate PNP transis-
tors in such a way that the input current
is limited to 100 pA.

A shift register (IC6) is used as a buffer
memory for the four highest address
bits (MSBs). Using the 74LS95 at this
point has the advantage that the NADS
(Negative Address Strobe) can be used,
without need for an inverter, to read in
the four MSBs to the register.

The NADS is also used to control the
databus buffers, in conjunction with the
NRDS and NENOUT signals (Negative
Read Data Strobe and Negative ENable
OUTput, respectively). This combina-
tion may seem rather strange to those of
our readers who have previously studied
the Elektor SC/MP system. One would
expect that the NWDS (Negative Write
Data Strobe) would also be involved in
the control of the databus buffers. After
all, the NWDS is supposed to control

5-38 — elektor may 1979

BASIC microcomputer

sV

o

k)

L4

NBREQ, NBREO}

NENIN, NENOUTy

SC/MP =1

== NENIN; NENOUTy

SC/MP =2

NENINN NENOUTH

NENOUT)/NENING

READ ONLY
MEMORY (ROM)

READWRITE
MEMORY (RAM)

NBRED)/NENINg |

= e
".':ge;::e:r T _{e_".':*ss.a:",aﬂl—
I 3

)

PERIPHERALS NENOUT2/NENINYy

|

ACTIVE 1/ s

&

7777 % R

S

iz

/_2

7907562

Multiprocessor System Using SC/MP-11 (INS 8080) Built-in Logic for Bus Contral

A

\&

PR I

| scme | | scwe |
f—?3—| =1 |—??—| l:— |_

SC/MP

79075-6b

the storing of data in memory. Rest as-
sured: that is still the case, even with
this system. The only difference is that
the NWDS no longer determines the
moment when the data is applied to the
databus. The timing sequence is such
that the data is already present at the
memory inputs before the NWDS signal
initiates the writing of that data into the
memory. The advantage of this system
is that it makes for a more reliable
‘write’ cycle.

Reading data out of the memory is done
in the usual way: the databus buffers
are controlled by the NRDS. When
addressing memories and the like, a sig-
nal is used that is derived (as in the
Elektor SC/MP system) by ANDing the
NRDS and NWDS signals, in N1. These
two signals are also brought out sepa-
rately to the system bus via N2 (NWDS)
and N4 (NRDS).

It should be noted at this point that
both the 74(LS)08 and the 74(LS)09
can be used as output buffers; the 09 is
only required in DMA or multiprocessor
systems. The reason for this is that the
74(LS)09 has so-called open-collector
outputs, so that several of these ICs can
be connected in parallel (with one com-
mon set of pull-up resistors) without
‘piting’ each other. If only a simple sys-
tem is contemplated, with one CPU and
without DMA, the 74(LS)08 can be
used instead; the pull-up resistors R1,
R2, R3 and RS can then be omitted.
There is a further reason for controlling
the databus buffers by means of a com-
bination of the NADS, NRDS and NEN-
OUT signals — quite apart from the in-
crease in speed and reliability when
writing data into the memory. In sys-
tems where the SC/MP is used without
output buffers, DMA and multipro-
cessing present few problems, since its
tri-state outputs can easily be set in the
‘floating’” mode. However, in the buf-
fered system described here, the output
buffers are not controlled by the NWDS

signal; they could easily remain in the
‘write’ mode, forcing ‘hard’ logic levels
onto the databus. This possibility is pre-
cluded by using the NENOUT signal to
terminate the ‘write’ mode. In order to
understand how this works, the ‘read’
and ‘write’ cycles in the SC/MP system
must be explained in slightly greater de-
tail.

Reading and Writing

As is often the case, the best place to
start this explanation is at the be-
ginning: logic @ level at the NRST input
(Negative ReSeT). This situation is
achieved by operating S1. The set/reset
flip-flop (N7, N8) applies logic @ to the
NRST input of the SC/MP for as long as
this key is held down, causing the pro-
cessor to assume its initial (reset) state.
All outputs, with the exception of the
NENOUT (Negative Enable OUTput),
are then in the floating (tri-state) mode.
The pull-up resistors R4, R6 and R10
hold the NWDS, NRDS and NADS out-
puts at a defined logic level (logic 1), so
that nothing untoward can occur...
When S1 is released, the SC/MP will
check for a logic @ level at the NBREQ
and NENIN inputs (Negative Bus RE-
Quest and Negative ENable INput, re-
spectively). Figure 4 illustrates this pro-
cedure. In a basic single-processor sys-
tem without DMA facility, R7 will al-
ways pull the NBREQ input high. As
soon as the processor detects this logic 1
level, it will proceed to use the same
connection as NBREQ output. Since the
logic 1 level signifies that no other part
of the system is using the bus at present
(obviously, in a simple system without
DMA this is always the case, since there
is only the one CPU), the processor pro-
ceeds to stake its claim to the bus by
making the NBREQ output logic 0.
Having done this, it tests the logic level
at the NENIN input. Since this input is
connected to the NBREQ output (by

means of the link shown as a dotted line
in figure 3) it will also be at logic @
level. With both necessary conditions
now fulfilled, the SC/MP will proceed to
fetch its first instruction.

This first ‘read’ cycle is illustrated in fig-
ure 5. Shortly after the NBREQ output
goes to logic @, the NADS signal ap-
pears. The shift register (IC6 in figure 3)
takes this as its cue to store the four
MSBs of the address; simultaneously
flip-flop N5/N6 is set, switching the
databus buffers into the write mode.
However, when the NRDS signal ap-
pears it will reset this flip-flop and
switch the databus buffers into the
‘read’ mode. The read cycle is ter-
minated by a brief pulse on the NEN-
OUT connection. In this case, the NEN-
OUT pulse has no effect on the buffers
— they had already been switched back
to the floating state at the end of the
NRDS pulse, as shown in figure 5.

The sequence of operations during the
write cycle is similar, with one major
difference: the output of N6 holds the
databus buffers in the write mode for a
much longer period. In fact, the NWDS
signal falls well inside this period. The
result is that the data to be stored are
present at the memory input well before
the NWDS signal appears, and remain
there for a short time after this pulse is
terminated. Finally, the NENOUT pulse
causes the buffers to revert to the float-
ing state.

The advantage of the system outlined
above will become apparent from a
closer look at the multiprocessor facili-
ties that the SC/MP has to offer. Figure

6a gives a rough outline of a microcom-
puter system in which several SC/MPs
are used. The first of these is connected
in the same way as in the single-proces-
sor system described so far. For all the
following SC/MPs, however, there is a
minor modification to the circuit: the
NENIN input of each is connected to
the NENOUT of its predecessor in the

BASIC microcomputer

elektor may 1979 — 5-39

A 5V E "
'!.‘-f 2] soc| & g
) b=
2 = 19
o = O] :—L—; 7
ap1s 123 184, ® D o N oae
2y@ @ - 5 8 connector: |IC 10 pin:
4 el
a0 e 28 @ 15 8al ! 21 | AD11 8
IC9 icn - T ass -
74LS155 ® 6| 81LS95 |7 oc] |
a0 13 (122 —ac ® wu 13 gal | | 2 i ADD9 22
@ PR 2 | ADBB| =
ap iz joe 13, ® 12 D 1 108f pe 5 23 | ADO7 1
: ‘ 2 | ADOG 2
] 242 | ADOS | 3
o ¥) - 2c | ADO4 | s
AD 11 “:' Sk :
\ i 12 ADDRESS-lines, 2 | ADO2 =
aospl2ec 26 | ADO1 ,
26c | ADOO 8
NRDSAIE
DIN 79075-7
connector
41612
chain. Figure 6. A multiprocessor system contains | the NBREQ line down to logic 0. No

After the initial reset, the situation for
the first processor is exactly as outlined
above. All other processors, however,
must wait for their turn: as long as one
CPU is using the bus, all others must
keep off. The principle is clear from fig-
ure 4: each time a CPU wants to ‘get on
the bus’, it will first check the logic level
on its NBREQ input. A logic ¢ at this
point signifies that one of the other
SC/MPs is performing a read or write cy-
cle at that moment, so that the bus is
busy.

The interplay between the various CPUs
is further determined by the NENIN
and NENOUT signals. The rules of play
are as follows. When a processor is using
the system bus, its NENOUT is always
at logic 1; if it is not on the bus, its
NENOUT assumes the same logic level
as that present at its NENIN. Bearing in
mind that the NENIN must be at logic @
before the actual read or write cycle can
be initiated, the sequence of events is as
follows.

Assume that a CPU somewhere in the
middle of the chain wants to store some
data in memory. Testing the NBREQ
line, it discovers that this is at logic @
and so it is forced to sit back and wait
its turn. As soon as the NBREQ line
goes high, the CPU quickly jumps in and
pulls this line low again, staking its
claim. This pulls the NENIN of the first
SC/MP low and, assuming that this CPU
is not interested in the busses, its NEN-
OUT will follow — passing the logic @
level on to number 2, The low NEN-
OUT/NENIN level is passed down the
chain in this way until it reaches the
CPU that requested entry to the bus.

This unit takes this signal as a sign of
approval, maintains its own NENOUT
connection at a logic 1 level and pro-
ceeds to store the data.

It is, of course, conceivable that two
CPUs jump in simultaneously when one
other goes off the line — both pulling

several CPUs connected in a series chain as
shown. The initial check procedure (illus-
trated in figure 4) ensures automatic ‘time-
sharing’; this is further illustrated in the pulse
diagram given in figure 6b.

Figure 7. The (ROM) memory section of the
BASIC microcomputer. The complete NIBL
interpreter is contained in IC10.

problem. The low level on the NEN-
OUT/NENIN connections is passed
down the chain until the first of the two
CPUs is reached — and stops here! Only
when that unit is finished with its read
or write cycle will it produce a logic @
level at its NENOUT (the NBREQ re-
mains low because the second CPU is
still holding it down); this signal then
goes further down the chain until the
second CPU is reached, and only then
can it get onto the busses.

The same principles are involved in a Di-
rect Memory Access (DMA) system: any
other units (a terminal, for instance)
that require direct access to the busses
must include logic gating that provides
the same relationships between
‘NBREQ’, ‘NENIN’ and ‘NENOUT’ sig-
nals. They can then be linked into the
chain in exactly the same way.

Memory

As stated earlier, the complete BASIC
interpreter is stored in a single IC. This
makes the memory circuit in the NIBL
computer simplicity itself (figure 7).
One integrated circuit, a 74LS155
(IC9), is used as address decoder. It de-
tects the four MSBs of the address, and
it is wired in such a way that the NIBL-
ROM (IC10) is located on page 0 in the
memory. The remaining twelve address
lines go direct to the ROM; the outputs
from the memory are buffered (IC11)
and applied to the databus.

The output from the address decoder is
also brought out to pin 30c of the edge
connector. In the Elektor SC/MP sys-
tem, this line is used for control of the
databus buffer (EPS 9972). With this
extra connection, the BASIC microcom-
puter is suitable for use as a replacement
for the original CPU card in an existing
Elektor SC/MP system with or without
databus buffering.

BASIC microcomputer elektor may 1979 — 541
NIBL PUT, PRINT, LIST, CLEAR and
The NIBL-BASIC interpreter is a 4096 RUN). :
byte program for the SC/MP, that is | — otherwise, spaces can be added in the
Resistars: used to ‘translate’ BASIC statements program text as desired.

R1..R3,R5 = 2k2
R4, R6, R7, R10, R11 = 10k

R8 = 100k
R9, R12 =1k
R13, R14 = 4k7
R15 =608
R16 =27002
Capacitors:

C1 = 27p
C2..C4 = 100n

Semiconductors:

Tl T2 = BC1078, BC547B
T3 = BC1778B, BC557B
D1..D4 = DUS

1C1 = INS8060 (SC/MP 11)
IC2, IC3, IC11 = 81LS95
IC4, IC5 = 81LS97
IC6 = 74LS95
IC7 = 74LS08
IC8 = 74LS00
IC9 = 74LS155
IC10 = INS8295N
Sundries:

1 x 64-pin connector DIN41612 (male)
1 x 25-pin connector 90° MIN D (female)

Figure 8. Printed circuit board for the com-
plete BASIC microcomputer (EPS 79075).

Figure 9. Component layout for the
p.c. board, Note that some wire links are only
required in certain applications.

and commands to routines in machine
language.

Use of BASIC as a programming lan-
guage is explained in the BASIC course
that is included as a series of supple-
ments in the Elektor issues from March
this year on. A brief summary of the
commands and statements that are avail-
able when using NIBL is included in this
article; some other details also need fur-
ther clarification.

NIBL (National’s Industrial BASIC Lan-
guage) expects to find RAM storage area
from address 1000y on (the ‘H’ stands
for hexadecimal). The first 285 bytes of
this memory are used by NIBL for stor-
ing data. All remaining memory from
there on (i.e. from address 111Ey) is
available to the user.

Once the reset key has been operated,
NIBL is ready to receive program lines.
Single statements can be entered with-
out a program line number, if required:
in that case they will be carried out im-
mediately (so-called ‘direct’ or ‘imme-
diate’ mode). This can be particularly
useful when testing a (section of) pro-
gram. In the direct mode, variables can
be given certain values so that the pro-
gram can be started from a well-defined
initial situation.

A program can be entered in two ways:
from the keyboard of a terminal, or by
means of a paper-tape reader or some
similar device. In the latter case, the
reader-relay should be controlled by the
flag 1 output. However, relatively few
people have access to a paper-tape read-
er and the associated ‘hole-puncher’, so
a tape or cassette recorder will normally
be used instead. For this, a cassette in-
terface is required, as well as some addi-
tional ‘software’,

The NIBL statements and commands
are based on Tiny BASIC. However,
NIBL contains several additional fea-
tures. The most important of these are
the DO ... UNTIL routine, which is de-
rived from ‘PASCAL’, and the ‘Indirect
Operator’. The latter replaces the PEEK
and POKE statements in other BASIC
dialects: it can be used for direct ad-
dressing of the memory and I/O (Input/
Qutput devices). Of lesser importance —
although it can be useful — is the possi-
bility of using so-called ‘text variables’.

NIBL statements and commands

Program entry (program lines)

— a line without a line number is car-
ried out immediately.

— a line with a line number is inserted
in the program in the correct (numer-
ical) position.

— line numbers from 0 to 32767
=2 _ 1) can be used.

— spaces are not permitted within ‘Key
words’ (LET, IF, THEN, GOTO, GO-
SUB, GO, TO, SUB, RETURN, IN-

— SHIFT/0 (or back-arrow on a tele-
type) deletes the letter that was
typed in last.

— CONTROL/H (or backspace on a
video terminal) has the same effect as
SHIFT/O.

— CONTROL/U deletes the line that is
being typed in at that moment, with-
out affecting the data stored under
that line number in memory.

Program control (commands)

— CLEAR returns all variables and
‘stacks’ to their initial state (usually
Zero).

— NEW erases page 1 in the memory.

— NEW n (where 2 < n<7) erases the
corresponding page in memory,

— LIST thitiates a print-out of the pro-
gram from the first line or of the line
number specified (e.g. LIST 200).

— RUN starts the program (starting at
the first line).

— GOTO n (where 0 < n < 32767)
starts the program at the line number
specified, without resetting the vari-
ables and stacks.

Variables, constants, operators

— 26 variables can be used: the letters
AtoZ.

— all operations (‘expressions’) are car-
ried out using 16-bit ‘two’s comple-
ment’ numbers.

— arithmetical operators: +, —, *, /.

comparison symbols: <, >, = <=,

> =& B

logic operators: AND, OR, NOT.
decimal constants must remain with-
in the range from —32767 to +32767.

— hexadecimal constants are recognised
as such when preceded by the sym-
bol #. Not more than four digits (16
bits) are permitted.

— program lines may contain more than
one statement, provided the state-
ments are separated by a colon (:).

Functions

— RND (a, b) generates a random num-
ber within the range from a to b.

— MOD (a, b) gives the remainder after
the division a/b.

— STAT calls up the contents of the
status register in the SC/MP.

— PAGE calls up the number of the
page in memory that is currently in
use.

— TOP calls up the upper boundary of
the NIBL program, as a decimal ad-
dress.

INPUT/OUTPUT statements

— INPUT X

— INPUTX, Y, Z

— PRINT THIS IS NIBL”

— PRINT"F=" M= A

— PRINT ”SKIP”, X, "PAGES”;

Note that the semicolon (;) suppresses
the automatic CR/LF (Carriage Return/
Line Feed) after a print statement.

5-42 — elektor may 1979

BASIC microcomputer

[}
BUSPRINT | BUS PRINT | BUSPRINT
H EPS 9857 !

J;/Z 7 7 % 7
r i Z I 7 5 7
i 4K} aK NIBL [cassette | sipply
: RAM = RAM micro- :mlel;f‘cgl SV
i t oot |} commmaenphith) THEY
1
| ers | EPS EPS | i EPS
! o885 | 9885 79075 ! i 9906
b Loy

O

| VHF/UHF| :

: modulatofr— Ele:termlml

= : EPS 9966 o
=

: EPS : o oo |

Lo 5 ASCII Keyboard cassette

EPS 9965

79075-10

Assignment statements
— LETX=7

— E=1xR

— STAT=#%#70

— PAGE =PAGE + |
— LET @ A = 255

— @(T+36)=#FF
— B=@(TOP + 5)

Control statements

— GO TO 15 or GOTO 15

— GOTOX +5

— GO SUB 100 or GOSUB 100
— RETURN

- IFX+Y> #1AGOTO 15
— IFA=BLET A=B-C

— FORI=10TO @ STEP -2

— NEXT 1
— FORK=1TOS5
— DO: X=X+ 1: UNTIL (X=10)

OR (@X =13)

Indirect operator

— the @ symbol can be used for imme-
diate addressing of a location in
memory; for instance: V = # 2000:
LET @ V = 100 results in the decimal
number 100 being stored at memory
location 2000y, Similarly, LET W =
@ V gives the variable W the value
stored in memory location V,

String handling (text facilities)

— $A ="ONE LINE OF TEXT”
— PRINT 8T, $(TOP + 72)

— INPUT 3$(U + 20)

— U=§(TOP+ 2 = 36)

Sundries

— LINK (address): The program is con-
tinued in machine language, from the
address indicated. The address must
be given as a decimal number.

— REM offers the possibility of adding
explanatory text (comments, remind-
ers) to the program.

— END: this statement is used to con-

clude a program, and to add ‘break
points’.

Error indications

As soon as a program is started, error

indications may appear as a result of

incorrect or incomplete use of NIBL.

The general error indication format is as

follows:

... ERROR AT

The first four characters indicate the

type of error; the final characters (up to

five) give the line number. For example,

incorrect use of a statement at line num-

ber 4500 would result in the print-out:

STMT ERROR AT 4500

Error indications in NIBL all use ‘words’

of up to four letters. The following indi-

cations are possible:

AREA The memory space available on
the chosen page is exceded.

CHAR Redundant or incorrect charac-
ters in or following a statement,

DIV(Q Division by zero.

END” No quotation marks after text to
be printed.

FOR FOR is not followed by NEXT.

NEST Subroutine possibilities are ex-
ceded,

NEXT NEXT used without FOR.

NOGO The line number specified in a
GOTO or GOSUB statement
does not exist.

RTRN RETURN was not preceded by
GOSUB.

SNTX Incorrect syntax.

STMT Incorrect use of a statement.

UNTL UNTIL is used without DO,

VALU Incorrect constant or number
outside the range.

The p.c. board

The complete circuit can be mounted
on the p.c. board shown in figure 8. The

Figure 10. Block diagram of a complete
BASIC microcomputer system with extension
facilities, based on the main board described
in this article,

board size corresponds to that used in
the Elektor SC/MP system: it is Euro-
card format, and the edge connector
corresponds to the system bus. A sec-
ond connector is included on the other
end of the board; this is intended for
connecting a teletype or videoterminal
according to the RS232C/V24 standard.
This 25-pin connector is variously re-
ferred to as a ‘female modem connector’
and as a ‘D connector’.

Where possible, the component layout
shown in figure 9 indicates which wire
links should be included for a particular
application. Reference to figure 3
should further clarify matters.

A complete microcomputer

The unit described here obviously re-
quires a few additional circuits to be
fully operational. A minimum system
would consist of one bus board, a power
supply board, one 4K RAM card and
the BASIC computer card described in
this article. The system can be extended
by adding up to six memory cards.

An obvious choice for in- and output
unit is the Elekterminal. The complete
Elektor BASIC microcomputer would
then consist of the units shown in figure
10.

Lit.

1. SC/MP data sheet,
420305227-001A4

2. SC/MP instruction guide, pub. no.
4200110A4.

3. SC/MP technical description, pub.
no. 4200079A.

4. SC/MP microprocessor applications
handbook, pub. no. 420305239-
001A.

5. SC/MP programming and assembler
manual, pub. no. 4200094B.

6. Elektor E31 ... E36 (November 1977
... April 1978). i

pub. no.

