

NIBL-E

A BASIC interpreter for the Elektor SC/MP system

A BASIC interpreter for the SC/MP has been available for some time. However, this can only be used in systems where page 0 is available for storing the interpreter program. In the Elektor SC/MP system, part of page 0 is used for the monitor program. Even so, an adapted version of the interpreter CAN be incorporated into the Elektor system — as described in this article.

(D. Hendriksen)

The BASIC interpreter for the SC/MP is known as NIBL. This is an abbreviation of National's Industrial BASIC Language.

This interpreter program occupies nearly 4K bytes, or one page in a SC/MP system. It would be asking too much to expect a complete BASIC interpreter in this area; for this reason, NIBL is derived from Tiny BASIC. Consequently, only whole numbers can be used in calculations, and the number range is limited: only numbers between -32767 and +32767 are permitted. Furthermore, 'scientific' calculations are outside the scope of NIBL; fortunately, they are not really essential.

Looking on the positive side, NIBL has some capabilities that are not included in Tiny BASIC. In fact, NIBL is more powerful in some ways than more sophisticated BASIC dialects. This is especially true of the IF...THEN... statement and the DO...UNTIL loop. NIBL is intended for self-contained SC/MP systems, where the interpreter can be started by operating the 'reset' key.

The programs can be stored in pages 1...7. As mentioned above, page 0 is normally occupied by the NIBL interpreter itself. Part of page 1 is used as 'scratch-pad memory' by the interpreter, so some RAM must be reserved in this area.

After starting the interpreter program (by means of the 'reset' key), NIBL will first check to see whether a program is present in page 2. If so, it will run this program immediately; if not, it will prepare page 1 to receive a program and wait until this is entered. If a different page is to be used, this can be specified by using the PAGE= (n) command, where n is 1...7.

Fitting NIBL into the Elektor SC/MP system

If NIBL is to be used in the Elektor system, some modifications are required. Page 0 is not available for the interpreter, since this area is used in part by 'Elbug'. Something's got to

move, and in this case it's the interpreter.

Fortunately, the SC/MP's CPU structure makes it a relatively easy matter to move a program. Normally, only instructions relating to pointer manipulations need changing. There are, of course, exceptions to this rule... and NIBL is one of them. It not only uses the three pointers: in the course of the program, some data-bits are also used to determine addresses. As a result of all this, the NIBL version described here contains some 300 modifications with respect to the original.

Placing Elbug on page 0 offers both advantages and disadvantages. The main disadvantage is that NIBL has to be moved; the main advantage is that the cassette routines in the monitor program can be used for storing programs on tape. In the Elektor version, there is no need for a paper-tape reader/puncher; in the original version of NIBL, some further modifications would be required to obtain the same easy cassette storage facility.

Modifications

It was decided to move the interpreter program to page 1. Admittedly, this costs one page of program memory — leaving six pages for the user. The possibility was considered of moving the interpreter out past the program memory — 'above' page 7 — but this would require a large number of additional modifications.

When the interpreter is moved, its 'scratch-pad memory' will also move up one page, to page 2. Therefore, RAM must be available at the top of this page. The interpreter program itself can be stored in EPROM. This is cheaper than using a complete 4K RAM card and, furthermore, the interpreter is then always available for immediate use. The RAM area at the top of page 2 must consist of at least 2K bytes. This is sufficient for a BASIC program of approximately 60 lines — more than enough for the first experimental programs.

Since the interpreter is on page 1,

1000 08 08 08 C4 20 36 C4 1C 32 C4 21 35 C4 20 31 C4
 1010 FF C9 00 C9 01 C4 03 CA F6 C4 02 31 C4 30 35 B9
 1020 02 01 A9 02 C1 80 E4 0D 98 19 BA F6 C4 FF C9 00
 1030 C9 01 C4 0D C9 FF 35 02 F4 10 E4 80 98 05 E4 80
 1040 35 90 E9 C4 00 CA F4 CA F5 C4 58 CA FB C4 1C CA
 1050 FA C4 00 CA EA 01 C4 00 CA 80 AA EA 01 C4 34 60
 1060 9C F4 C4 50 CA FD C4 7A CA FF C4 6A CA FC C4 A6
 1070 CA F9 C4 8A CA FE C2 FB 33 C2 FA 37 C7 01 01 C7
 1080 01 33 CA FB 40 D4 1F DC 10 37 CA FA 40 D4 E0 E4
 1090 20 98 2F E4 A9 08 07 E4 C0 98 E1 3F 90 D8 C2 F9
 10A0 E4 D6 9C 04 C4 0A 90 60 E4 D6 33 CA EA C4 20 37
 10B0 01 C2 FB CF 01 C2 FA CF 01 C2 EA 33 CA F9 40 37
 10C0 90 BA CA E7 C5 01 E4 20 98 FA C5 FF C2 FA 37 CA
 10D0 EC C2 FB 33 CA ED C7 01 01 BA E7 40 D4 7F E5 01
 10E0 9C 07 40 94 F1 90 95 90 8D C2 E7 01 C5 80 C2 ED
 10F0 33 C2 EC 37 90 CA C4 20 37 C2 F9 33 C7 FF 01 C7
 1100 FF 33 CA F9 40 37 90 B8 90 41 C2 FC E4 7A 98 1C
 1110 AA FC AA FC 33 C4 20 37 C2 F4 98 0A 35 CB FF 35
 1120 31 CB FE 31 90 C1 C4 FF CB FF 90 BB C4 0A 90 1B
 1130 C5 01 E4 20 98 FA E4 2D 98 04 E4 37 C9 01 3F C4
 1140 04 90 08 C2 FC E4 6A 9C 04 C4 09 90 40 BA FC BA
 1150 FC 33 C4 20 37 C3 01 94 06 C4 00 CA F4 90 88 35
 1160 C3 00 31 C4 01 CA F4 90 F4 C2 F2 94 04 C4 08 90
 1170 1C C4 01 CA F4 3F C4 1F 37 C4 C1 33 C5 01 E4 22
 1180 98 DB E4 2F 98 05 E4 0D 3F C4 00 EB C4 07 90 35 C4
 1190 20 37 AA FD AA FD 33 C4 0A CB FE C4 00 CB FF C4
 11A0 05 CA E7 C4 FF CB 05 C3 FD 94 13 C4 2D CB 04 C4
 11B0 00 03 FB FC CB FC C4 00 FB FD CB FD 90 9F C4 20
 11C0 CB 04 90 99 90 57 AA FD AA FD 31 C4 20 35 AA E7
 11D0 01 C1 01 DC 30 C9 80 C1 FD D9 FC 98 0A C4 1F CA
 11E0 FA C4 33 CA FB 90 0B C4 1F 37 C4 C1 33 C2 F5 9C
 11F0 06 C1 04 3F C2 E7 01 C5 80 C1 00 3F C5 FF 94 FB
 1200 C4 50 CA FD C2 F5 9C BA C4 20 3F 90 B5 C4 1F 37
 1210 C4 C1 33 C4 0D 3F C4 0A 3F 90 A7 C4 05 CA EB C2
 1220 EB CA EA C4 1F 37 C4 C1 33 C4 0D 3F C4 0A 3F C4
 1230 1F 35 C4 3B 31 BA EB 98 06 C5 01 94 FC 90 F6 C5
 1240 01 3F C1 FF 94 F9 C2 EA E4 0E 98 0D C4 1F 35 C4
 1250 3B 31 C5 01 3F C1 FF 94 F9 C2 F4 98 4D C4 20 3F
 1260 C4 41 3F C4 54 3F C4 20 37 AA FD AA FD 33 C2 F7
 1270 CB FF C2 F8 CB FE C4 31 CA FB C4 1E CA FA 90 99
 1280 C4 1E 90 99 C2 F4 98 22 C1 00 D4 80 9C 1C 06 D4
 1290 20 98 ED C1 FF E4 0D 9C 08 C5 01 CA F7 C5 02 CA
 12A0 F8 C4 1C CA FA C4 86 CA FB 3F C4 00 CA F4 C4 50
 12B0 CA FD C4 1C CA FB C4 1C CA FA C4 6A CA F9 90 BE
 12C0 AA F4 C2 E9 35 C2 E8 31 C4 6A CA FC C4 8A CA FE
 12D0 C4 7A CA FF 3F 90 A7 90 A9 C1 00 E4 80 98 18 C4
 12E0 20 37 AA FD AA FD 33 C5 01 CB FF C5 01 CB FE C5
 12F0 01 C4 01 CA F5 90 DE C4 00 CA F5 C4 12 37 C4 83
 1300 33 3F 90 D1 90 D1 C4 1F 37 C4 C1 33 06 D4 20 98
 1310 E6 C5 01 E4 0D 98 05 E4 0D 3F 90 F0 C4 0D 3F C4
 1320 0A 3F 02 C4 4B CA FB C4 1C CA FA 90 AC C4 20 37
 1330 BA FD BA FD 33 02 C3 FE F3 00 CB FE C3 FF F3 01
 1340 CB FF 90 BE C4 20 37 BA FD BA FD 33 03 C3 FE FB
 1350 00 CB FE C3 FF FB 01 CB FF 90 A7 C4 20 37 C2 FD
 1360 33 03 C4 00 FB FE CB FE C4 00 FB FF CB FF 90 D2
 1370 90 92 C4 20 37 C2 FD 33 C3 FF E3 FD CA EA C3 FF
 1380 94 0D 03 C4 00 FB FE CB FE C4 00 FB FF CB FF C3
 1390 FD 94 0D 03 C4 00 FB FC CB FC C4 00 FB FD CB FD
 13A0 C4 00 CB 00 CB 01 CB 02 CB 03 C4 10 CA EB C3 FF
 13B0 1F CB FF C3 FE 1F CB FE 06 94 11 02 C3 02 F3 FC
 13C0 CB 02 C3 03 F3 FD CB 03 90 02 90 A4 02 C3 03 1F
 13D0 CB 03 C3 02 1F CB 02 C3 01 1F CB 01 C3 00 1F CB
 13E0 00 BA EB 9C C9 90 02 90 85 C2 EA 94 0D 03 C4 00
 13F0 FB 00 CB 00 C4 00 FB 01 CB 01 C3 00 CB FC C3 01

1400 CB FD BA FD BA FD 90 DF C4 20 37 C2 FD 33 C3 FF
 1410 DB FE 9C 04 C4 0D 90 B2 C3 FD E3 FF CA EA C3 FD
 1420 94 11 C4 00 03 FB FC CB 02 C3 FC CB 03 C3 FF 94 0D C4
 1430 0A 90 B4 C3 FD CB 02 C3 FC CB 03 C3 FF 94 0D C4
 1440 00 03 FB FE CB C4 00 FB FF CB FF C4 00 CB 01
 1450 CB 00 CA EB CB FD CB FC 02 C3 FC 03 CB 03 C3 02 F3 02
 1460 FD F3 FD CB FD 02 C3 03 F3 03 CB 03 C3 02 F3 02
 1470 CB 02 C3 01 F3 01 CB 01 C3 00 F3 00 CB 00 03 C3
 1480 01 FB FE CB 01 C3 00 FB FF CB 00 94 11 02 C3 01
 1490 F3 FE CB 01 C3 00 F3 FF CB 00 90 08 90 93 C3 FC
 14A0 DC 01 CB FC AA EB E4 10 9C AE C2 EA 94 0D C4 00
 14B0 03 FB FC CB FC C4 00 FB FD CB FD BA FD BA FD 90
 14C0 DB C4 20 37 C2 FD 33 C7 FD 01 C3 01 CA 80 02 40
 14D0 F4 01 01 C3 02 CA 80 33 CA FD C4 10 37 C4 75 33
 14E0 3F C5 01 E4 20 98 FA C1 FF 03 FC 5B 94 05 03 FC
 14F0 E6 94 12 C5 FF C2 FB 33 C2 FA 37 C3 00 CA FA C3
 1500 01 CA FB 90 D5 01 C1 00 03 FC 5B 94 05 03 FC E6
 1510 94 E1 C4 20 37 AA FD 33 02 40 70 CB FF C4 02 02
 1520 F2 FB CA FB C4 00 F2 FA CA FA 90 AE C4 20 37 AA
 1530 FD 33 C3 FE 01 80 CB FE 02 40 F4 01 01 C2 80
 1540 CB FF 90 96 C4 01 90 12 C4 02 90 0E C4 03 90 0A
 1550 C4 04 90 06 C4 05 90 02 C4 06 CA EB C4 20 37 BA
 1560 FD BA FD 33 03 C3 FE FB 00 CA EF C3 FF FB 01 CA
 1570 EE E3 FF 01 C3 FF E3 01 50 E2 EE CA EA C2 EE DA
 1580 EF 98 02 C4 80 E4 80 01 BA EB 9C 05 40 90 2B 90
 1590 B1 BA EB 9C 05 40 E4 80 90 20 BA EB 9C 04 C2 EA
 15A0 90 18 BA EB 9C 05 40 DA EA 90 0F BA EB 9C 07 40
 15B0 DA EA E4 80 90 04 C2 EA E4 80 94 04 C4 01 90 02
 15C0 C4 00 CB FE C4 00 CB FF C4 10 37 C4 F5 33 3F 90
 15D0 BE C2 EF DA EE 98 02 90 B6 C5 01 E4 0D 9C FA C4
 15E0 12 37 C4 83 33 3F 90 A7 C4 01 90 06 C4 02 90 02
 15F0 C4 03 CA EB C4 20 37 BA FD BA FD 33 BA EB 9C 0E
 1600 C3 01 D3 FF CB FF C3 00 D3 FE CB FE 90 08 BA EB
 1610 9C 0E C3 01 DB FF CB FF C3 00 DB FE CB FE 90 08 C6
 1620 C7 01 E4 FF CB FF C7 01 E4 FF CB FF 33 CA FD 90
 1630 B5 C2 F1 31 CA F1 C2 F0 35 CA F0 3F C2 F4 98 01
 1640 3F C4 03 CA EB C4 12 37 C4 1E 33 3F AA FD AA FD
 1650 33 C4 20 37 C4 00 CB FF CB FE CA EB C5 01 E4 20
 1660 98 FA C5 FF C1 00 03 FC 3A 94 09 03 FC F6 94 13
 1670 90 32 90 BB 03 FC 0D 94 2B 03 FC FA 94 02 90 24
 1680 02 F4 0A 01 C4 04 CA EA CA EB C3 F3 02 F3 FE CB
 1690 FE C3 FF F3 FF CB FE BA EA 9C EF C3 FE 58 CB FE
 16A0 C5 01 90 C0 C2 EB 9C 87 C4 05 90 97 C5 01 E4 20
 16B0 98 FA C5 FF 03 FC 3A 94 05 03 FC F6 94 21 C2 FB
 16C0 33 C2 FA 37 C3 00 CA FA C3 01 CA FB 90 A4 C4 02
 16D0 02 F2 FB CA FB C4 00 F2 FA CA FA 90 95 90 CB 01
 16E0 C4 20 37 AA FD AA FD 33 C4 00 CB FF 40 CB FE C5
 16F0 01 C1 00 03 FC 3A 94 06 03 FC F6 94 02 90 CF 01
 1700 C3 FF CB 01 C3 FE CB 00 C4 02 CA EA 02 C3 FE F3
 1710 FE CB FE C3 FF F3 FF CB FF D4 80 9C 34 BA EA 9C
 1720 EB 02 C3 FE F3 00 CB FE C3 FF F3 01 CB FF D4 80
 1730 9C 1F 02 C3 FE F3 FE CB FE C3 FF F3 FF CB FF D4
 1740 80 9C 0E 02 40 F3 FE CB FE C4 00 F3 FF CB FF 94
 1750 9E C4 06 90 88 90 84 C4 20 35 C4 D6 31 C4 00 CA
 1760 E7 C4 1F 37 C4 C1 33 C2 F4 98 08 C4 3F C4 20
 1770 3F 90 03 C4 3E 3F C4 1F 37 C4 76 33 3F C4 C1 33
 1780 40 98 F3 E4 0A 98 EF 40 E4 0D 98 50 40 E4 5F 98
 1790 41 40 E4 08 98 36 40 E4 15 98 0F 40 E4 03 9C 1A
 17A0 C4 5E 3F C4 43 3F C4 0E 90 A9 C4 5E 3F C4 55 3F
 17B0 C4 0D 3F C4 0A 90 99 0B 98 40 CD 01 AA E7 E4
 17C0 48 9C B3 C4 0D 01 40 3F 90 12 90 87 C4 20 3F C4
 17D0 08 3F C2 E7 98 A0 BA E7 C5 FF 90 9A 40 CD 01 C4
 17E0 0A 3F C4 20 35 C4 D6 31 90 CE C4 20 37 C2 FD 33
 17F0 C3 FF 35 01 C3 FE 31 CA EF C1 00 CB FE C4 00 CB

Elbug must be used to start the program. The normal hex-I/O start procedure is used; since the desired program is on page 1, the initial command is 'ru1000ru'.

Once started in this way, the first thing the interpreter does is look for a program on page 3 (not page 2: everything has been moved up one page!). If it finds a program there (stored in ROM), this will be run immediately. This first program can, if necessary, run over more than one page. However, as when programming in machine language, a

pointer change will then be required; when programming in NIBL, this is achieved by entering the instruction PAGE = PAGE + 1. The interpreter will 'read' this as an instruction to continue the program on the first line of the next page.

Obviously, this is a useful feature – not only when running an initial program that is stored in ROMs, but also when programs are stored in RAM. To achieve this latter capability, some further modifications in the original NIBL interpreter program proved necessary.

The problem is that the original NIBL version not only looks for a program in page 2: it also requires that this program is stored in ROM. If the program is stored in RAM, the interpreter refuses to run it! Not only that, it also blocks any programs stored on any of the other pages at the same time.

The reason for this 'malishness' is that NIBL, on finding a program on page 2, proceeds to write an 'end-of-program' indication at the top of each page – or tries to, at least. This indication consists of 'Carriage Return' (0D), followed by

1800 FF C2 EF 31 40 35 90 B0 C4 20 37 C2 FD 33 C7 FE
 1810 01 C7 FF CA EA C7 FF 33 CA FD C2 EA 37 40 CB 00
 1820 90 C6 90 A6 C4 20 37 C2 FD 33 C3 01 CA F7 C3 00
 1830 CA F8 C2 F1 33 C2 F0 37 C4 04 CA E7 C7 01 E4 0D
 1840 98 04 AA E7 90 F6 C2 E7 E4 04 9C 02 CA E7 C2 E7
 1850 01 C2 F2 94 06 D4 7F CA F2 90 18 C5 03 40 02 F4
 1860 FC 01 C5 01 E4 0D 98 0B 40 02 F4 FF 01 90 F3 90
 1870 AF 90 AF 40 DA E7 98 F7 C4 7A CA FF C4 6A CA FC
 1880 C4 8A CA FE 40 98 60 94 10 C1 00 C9 80 C5 01 94
 1890 F8 C1 00 94 F4 C9 80 90 4E C1 FE CA EA C4 FF C9
 18A0 FE C4 50 C9 FF C5 01 94 FC C1 00 94 F8 35 CA EE
 18B0 35 31 CA EF 31 C2 EF 02 70 C4 00 F2 EE E2 EE D4
 18C0 F0 98 03 C4 00 01 C4 FF C9 80 C5 FF 94 FA C1 01
 18D0 E4 50 98 04 C1 00 90 F0 C2 EA C9 00 C4 0D C9 01
 18E0 40 9C 04 C4 02 90 8A C2 E7 98 84 C2 F1 31 C2 F0
 18F0 35 C2 F3 33 C2 F2 37 C2 F7 CF 01 C2 F8 CF 01 C2
 1900 E7 CF 01 C5 01 CF 01 E4 0D 9C F8 90 DC C4 10 37
 1910 C4 75 33 3F 90 CF BA FD BA FD 33 C4 20 37 C3 00
 1920 CA EF C3 01 CA EE 90 E5 C2 FF 01 40 E4 7A 9C 04
 1930 C4 0F 90 E0 C2 EF DA EE 98 06 BA FF BA FF 90 CD
 1940 40 33 C4 20 37 C3 FF 35 C3 FE 31 90 C0 C2 EF D4
 1950 F7 07 90 B9 90 BE C4 20 37 AA FD AA FD 33 06 CB
 1960 FE C4 00 CB FF 90 EB C2 EE 37 C2 EF 33 C7 FF 3F
 1970 C4 20 36 C4 1C 32 90 DA C2 FF E4 8A 9C 04 C4 0A
 1980 90 D2 AA FF AA FF 33 C4 20 37 35 CB FF 35 31 CB
 1990 FE 31 90 BE C2 E9 37 C2 E8 33 C3 00 94 02 90 07
 19A0 C3 02 01 C7 80 90 F3 C7 02 AA FD AA FD 33 01 C4
 19B0 20 37 CB FF 40 CB FE 90 D9 C5 01 E4 0D 9C FA 3F
 19C0 C2 FD 33 C4 20 37 C3 03 CB FE C3 02 CB FF 90 C2
 19D0 90 AE C4 08 CA EB C2 E5 01 C2 E4 CA E9 C2 E5 02
 19E0 70 01 C2 E4 02 F2 E9 CA E4 BA EB 9C F0 02 02 F4
 19F0 07 01 C2 E4 02 F4 07 1E CA E4 AA E6 98 03 40 CA
 1A00 E5 C2 FD 33 C4 20 37 C4 01 CB 00 C4 00 CB 01 C3
 1A10 FE CB 02 C3 FF CB 03 C3 FC CB 04 C3 FD CB 05 C2
 1A20 E4 CB FE C2 E5 E4 FF D4 7F CB FF C7 06 33 CA FD
 1A30 90 9C 90 9C AA FD AA FD 33 C4 20 37 C4 00 CB FF
 1A40 C4 01 CB FE 90 EA C2 FE E4 A6 9C 04 C4 0A 90 E2
 1A50 E4 A6 31 CA F1 C4 20 35 CA F0 C2 FD 33 C4 20 37
 1A60 C3 F9 CD 01 C3 FC CD 01 C3 FE CD 01
 1A70 C3 FF CD 01 C2 F1 CD 01 C2 F0 CD 01 35 C2 F1 31
 1A80 CA FE C7 FC 33 CA FD 90 A7 C2 FE E4 8A 9C 04 C4
 1A90 0B 90 BB E4 8A 31 CA F1 C4 20 35 CA F0 C2 FD 33
 1AA0 C4 20 37 C7 FF E1 F9 98 04 C4 0C 90 A1 E1 F9 01
 1AB0 C2 80 02 F1 FC CA 80 CB 00 C6 01 C2 80 F1 FD CA
 1AC0 80 CB 01 C6 FF C1 FA CB 02 C1 FB CB 03 C1 FD 94
 1AD0 10 C4 04 CA EB C7 01 E4 FF CB FF BA EB 9C F6 90
 1AE0 02 C7 04 33 CA FD C2 F1 31 C2 F0 35 90 99 C2 EF
 1AF0 98 08 C2 FE 02 F4 F9 CA FE 3F C2 FE 33 C4 20 37
 1B00 C3 FF 35 C3 FE 31 90 E4 90 A1 C2 EE 35 C2 EF 31
 1B10 C4 1F 37 C4 C1 33 C5 01 E4 0D 98 D0 E4 0D 3F 06
 1B20 D4 20 9C F2 90 C6 C2 EE 37 C2 EF 33 C5 01 CF 01
 1B30 E4 0D C9 F8 90 B6 C2 EF 33 C2 EE 37 C5 01 E4 22
 1B40 98 0E E4 2F 9C 04 C4 07 90 BE E4 0D CF 01 90 EC
 1B50 C4 0D CB 00 90 DE C2 FD 33 C4 20 37 C7 FF 35 C7
 1B60 FF 31 C7 FF 01 C7 FF 33 CA FD 40 37 C5 01 CF 01
 1B70 E4 0D 98 C0 06 D4 20 9C F3 90 B9 AA FD AA FD 33
 1B80 C4 20 37 C2 F6 CB FE C4 00 CB FF 90 A7 C2 EF D4
 1B90 06 98 04 C2 EF CA F6 3F C2 F6 E4 02 9C 09 C4 21
 1BA0 CA E9 C4 20 2A E8 3F E4 02 01 C4 04 CA EB 40 02
 1BB0 70 01 BA EB 9C F8 40 CA E9 C4 02 CA E8 3F C2 E9
 1BC0 35 C2 E8 31 3F 35 01 40 35 40 1C 1C 1C CA F6
 1BD0 3F C2 E9 35 C2 E8 31 C4 0D C9 FF C4 FF C9 00 C9
 1BE0 01 3F C2 E9 35 C2 E8 31 C1 00 E4 FF 94 12 03 C1
 1BF0 01 FA EF C1 00 FA EE 94 07 C1 02 01 C5 80 90 E8

1C00 31 CA F3 31 35 CA F2 35 C2 EF E1 01 9C 07 C2 EE
 1C10 E1 00 9C 01 3F C2 F2 DC 80 CA F2 3F 12 0C 17 56
 1C20 2C 25 8D 4C 1E 16 AB 1C 35 1B 97 16 30 19 15 1B
 1C30 E1 18 23 4C 1E 2C 51 4C 49 53 D4 1B 97 16 AB 1C
 1C40 47 19 15 1B E1 4C 49 1B BD 12 D8 8F 2F 13 05 4C
 1C50 1C 2C 60 52 55 CE 11 2F 1B 97 1B BD 12 BF 12 83
 1C60 2C 6D 43 4C 45 41 D2 11 2F 10 50 12 83 2C 86 4E
 1C70 45 D7 16 AB 1C 78 4C 7A 1A 33 11 2F 19 15 1B 8C
 1C80 1B 97 1B D0 12 83 2C 8B 4C 45 D4 14 E0 1C 9A 2E
 1C90 2F BD 8E 35 14 C0 11 2F 12 83 2C AA C0 8E AC 2E
 1CA0 2F BD 8E 35 18 07 11 2F 12 83 2C BC 49 C6 8E 35
 1CB0 2C B6 54 48 45 CE 19 15 15 D0 4C 86 2C D1 55 4E
 1CC0 54 49 CC 16 3B 8E 35 11 2F 19 15 19 27 1B C4 12
 1CD0 83 2C DD 44 CF 16 3B 11 2F 19 77 12 83 2D 00 47
 1CE0 CF 2C EB 54 CF 8E 35 11 2F 4C F6 2E 2F 53 55 C2
 1CF0 8E 35 11 2F 11 09 1B 97 19 15 1B E1 11 68 12 83
 1D00 2D 10 52 45 54 55 52 CE 11 2F 11 42 1B C4 12 83
 1D10 2D 2A 4E 45 58 D4 16 3B 14 E0 1E 2F 11 2F 1A 88
 1D20 8E 5F 19 15 1A ED 1B C4 12 83 2D 54 46 4F D2 16
 1D30 3B 14 E0 1E 2F 2F BD 8E 35 2E 2F 54 CF 8E 35
 1D40 2D 4A 53 54 45 D0 8E 35 4D 4C 1A 33 11 2F 1A 45
 1D50 14 C0 12 83 2D 67 53 54 41 D4 2E 2F BD 8E 35 19
 1D60 15 19 4C 11 2F 12 83 2D 7E 50 41 47 C5 2E 2F BD
 1D70 8E 35 11 2F 19 15 1B 8C 1B 97 1B BD 12 83 2D 9E
 1D80 A4 8E AC 2E 2F BD 2D 8F A2 19 15 1B 35 4D 9A 2E
 1D90 2F A4 8E AC 16 30 1B 55 16 30 11 2F 12 83 2D D1
 1DA0 50 D2 2D A7 49 4E D4 2D AE A2 11 75 4D C1 2D BD
 1DB0 A4 8E AC 16 30 19 15 1B 09 16 30 4D C1 8E 35 8F
 1DC0 2F 2D C6 AC 4D A7 2D CB BB 4D CD 12 0C 11 2F 12
 1DD0 83 2E 09 49 4E 50 55 D4 16 3B 14 01 1D F6 16 30
 1DE0 17 56 8E 35 14 C0 16 30 2E 05 AC 14 E0 1E 2F 16
 1DF0 30 2E 2F AC 4D E2 2E 2F A4 8E AC 16 30 17 56 19
 1E00 15 1B 25 16 30 11 2F 12 83 2E 12 45 4E C4 11 2F
 1E10 12 7F 2E 26 4C 49 4E CB 8E 35 11 2F 16 30 19 15
 1E20 19 66 16 30 12 83 2E 2F 52 45 CD 19 B8 12 83 12
 1E30 1A 8F 2F 12 A9 8E 61 2E 3B BD 8E 61 15 43 2E 53
 1E40 BC 2E 48 BD 8E 61 15 4F 2E 4F BE 8E 61 15 47 8E
 1E50 61 15 4B 2E 8B BE 2E 5D BD 8E 61 15 57 8E 61 15
 1E60 53 2E 6A 6D 8E 8D 13 5A 4E 6F 2E 6D AB 8E 8D 2E
 1E70 78 AB 8E 8D 13 2C 4E 6F 2E 81 AD 8E 8D 13 43 4E
 1E80 6F 2E 8B 4F D2 8E 8D 15 EB 4E 6F 10 F5 8E AC 2E
 1E90 98 AA 8E AC 13 71 4E 8F 2E A1 AF 8E AC 14 07 4E
 1EA0 8F 2E 8B 41 4E C4 8E AC 15 E7 4E 8F 14 E0 1E B4
 1EB0 15 2B 10 F5 16 AB 1E BA 10 F5 2E C1 A3 16 4B 10
 1EC0 F5 2E CB A8 8E 35 2E 2F A9 10 F5 2E D4 C0 8E AC
 1ED0 17 E9 10 F5 2E DF 4E 4F D4 8E AC 15 EF 10 F5 2E
 1EE0 E9 53 54 41 D4 19 55 10 F5 2E F4 54 4F D0 1B 97
 1EF0 19 93 10 F5 2F 01 4D 4F C4 8F 20 14 07 19 BF 10
 1F00 F5 2F 16 52 4E C4 8F 20 19 D1 13 43 13 2C 14 07
 1F10 19 BF 13 2C 10 F5 2E 2F 50 41 47 C5 1B 7A 10 F5
 1F20 2E 2F A8 8E 35 2E 2F AC 8E 35 2E 2F A9 10 F5 16
 1F30 30 11 8E 14 07 11 C5 16 30 10 F5 20 45 52 52 4F
 1F40 D2 41 52 45 C1 53 54 4D D4 43 48 41 D2 53 4E 54
 1F50 D8 56 41 4C D5 45 4E 44 A2 4E 4F 47 CF 52 54 52
 1F60 CE 4E 45 53 D4 4E 45 58 D4 46 4F D2 44 49 56 B0
 1F70 42 52 CB 55 4E 54 CC 48 CA EB 06 DC 00 07 06
 1F80 D4 20 9C FB C4 57 8F 04 06 D4 20 9C F2 06 D4 FF
 1F90 DC 01 07 C4 7E 8F 08 06 D4 20 98 04 C4 01 90 04
 1FA0 C4 00 9C 00 CA EA 1F 01 1D 01 06 DC 01 E2 EA 07
 1FB0 BA EB 9C DF 06 D4 FE 07 8F 08 40 D4 7F 01 40 3F
 1FC0 90 B5 01 C4 FF 8F 17 06 DC 01 07 C4 09 CA EB C4
 1FD0 8A 8F 08 BA E8 98 10 40 D4 01 CA E9 01 1C 01 06
 1FE0 DC 01 E2 E9 07 90 E8 06 D4 FE 07 3F 90 D4 00 00
 1FF0 C4 19 37 C4 6F 33 3F 00 00 00 00 00 00 00 00 00 00 00

Table 1. Listing of the 4K NIBL-E interpreter.

Table 2. The interpreter can easily be adapted to virtually any transmission rate, by modifying the data in the nine addresses given here.

Address	110	300	600	1200
1F85	57	76	A7	3D
1F87	04	01	00	00
1F94	7E	E5	45	76
1F96	08	02	01	00
1FB9	08	06	04	02
1FC4	FF	64	25	86
1FC6	17	06	03	01
1FD0	8A	F0	50	81
1FD2	08	02	01	00

'FF'. If the program on page 2 was stored in ROM, no harm is done: the contents of the memory location at the top of the page cannot be altered, so the 'end-of-program' indication is not stored there. A jump to the next page for the continuation of the program is also possible, provided this continuation is also stored in ROM.

In the Elektor SC/MP system, however, programs will normally be stored in 4K RAM cards. The 'end-of-program' indication would then block every page. For this reason, NIBL-E is modified to

ensure that this indication is only stored at the top of all pages under condition that no initial program is found on page 3. The only page that will still be blocked, initially, is page 2. This is no problem, though: pages 3...7 provide more than enough memory space for any initial program.

Having entered and tested BASIC programs, the cassette routine in Elbug can be used for storing them on tape. When retrieving them, one minor problem remains to be resolved: unless a program is stored on page 3, any programs entered on the other pages will immediately be blocked by the interpreter, as described above. One further modification in the interpreter and a slightly more extensive 'start' procedure are required to cure this.

The complete program

Although the main points have already been discussed, it is perhaps a good idea to give a brief survey of the complete system.

The starting point is a complete Elektor SC/MP system, including Elbug and the associated cassette interface. The NIBL-E interpreter is located on page 1 – it can be stored in either ROM or RAM. A listing of this program is given in table 1. Page 2 must contain at least 2K of RAM, as scratch-pad memory for the interpreter; a small program can also be stored here. Extending page 2 to 4K of RAM provides space for more extensive programs.

Either ROM or RAM storage area can be included on the remaining pages (3...7), as required.

To be able to communicate with the interpreter (by means of a terminal, for instance), a small interface circuit must be included. This adapts the TTL logic levels in the SC/MP system to RS232C or V24, and vice versa; it also ensures correct polarity of the various signals. The in- and outputs from the interface can be hard-wired to the terminal, or a (standard) connector can be mounted on the p.c. board. The interface circuit and p.c.b. are described elsewhere in this issue.

A suitable terminal is the 'Elekterminal'; this can be connected to a normal TV set via the UHF/VHF modulator.

Transmission speed

In the original version, communication with the interpreter runs at a rate of 110 baud. The same is true of the NIBL-E version given in table 1. However, if it is used in conjunction with the Elekterminal, a much higher transmission rate is possible: up to 1200 baud.

Obviously, the software will have to be adapted if the transmission rate is changed. The memory locations that are affected by the transmission rate are listed in table 2; the data for the four most common transmission rates are

also included in this table. The values given are valid both for a SC/MP system with 1 MHz crystal and for a SC/MP II system with a 2 MHz crystal.

The NIBL interpreter opens the possibility of connecting a paper-tape reader to S_B. The reader-relay is controlled by the 'flag 1' output of the processor, via an output buffer. When developing NIBL-E, however, it was assumed that this facility would not be required, since the Elbug cassette routines will normally be used instead. However, it is a relatively simple matter to provide a 'paper-tape' input: the data in two addresses must be changed (1F7D becomes 02 and 1F8F becomes FD), and the reader is connected to the sense B input (via a parallel-to-series converter).

Storing a program on paper-tape is a simple matter: a LIST command provides simultaneous outputs to the terminal and to the puncher via flag 0. Normally speaking, the transmission speed for a puncher should not be higher than 300 baud.

Cassette routine

BASIC programs can be stored on tape and played back with the same ease as programs in machine language. The start address for the program on page 2 is 211F (hexadecimal); all other pages simply start at the top of the page, at address P000 (where P is the page number).

The final address can be found, once the

program has been entered, by giving the command PRINT TOP (followed, as always, by Carriage Return). The computer will respond by giving the final address plus one, as a decimal number – in other words, it gives the first address that can be used for a new program. This decimal number (minus one) must be converted to hexadecimal. With both 'begin' and 'end' address known, the Elbug cassette routine can be used to store the program on tape. The jump back to Elbug can be achieved in two ways: either operating the NRST key or giving the command LINK 0.

The LINK command is used to call up a program that is stored in machine language; in this case, the Elbug program, starting at address 0000. The LINK command can be followed by an address in either decimal or hexadecimal code. If the hexadecimal code is used, the number must be preceded by the # symbol.

Having 'dumped' the program on tape, a jump back to NIBL-E is initiated by keying in 'ru1FF0ru'. By starting at this address, part of the interpreter's initial procedure is avoided – in particular, the section that might otherwise block all programs. The interpreter now prints a prompt (>), after which the current program can be developed further or a new page can be selected for a new program, using the command NEW (P) (where P is the page number). Note that the lowest page number possible is 2. If an attempt is made to select page 1, the interpreter will simply select page 2 instead.

To load a BASIC program from cassette, the routine is as follows. First, NIBL-E is started with the command ru1FF0ru. When the prompt symbol appears, the page that is to be loaded is selected: NEW (P). The next step is to jump back to Elbug: LINK 0. The program can now be loaded in the usual way, using the ca...up instruction; when loading is completed ('Elbug' appearing on the display), the jump back to NIBL-E can be executed (ru1FF0ru). As soon as the prompt symbol is printed, the program can be started by giving the RUN command.

Loading NIBL-E

It is well nigh impossible to load a 4K byte program from the keyboard without introducing errors somewhere along the line. For this reason, it is the intention to include the program on an ESS record in the near future.

Using NIBL-E

Only a few NIBL commands have been mentioned in the course of this article. A more extensive summary is given in the description of the BASIC microcomputer elsewhere in this issue: furthermore, the BASIC course explains the use of virtually all possible NIBL commands.

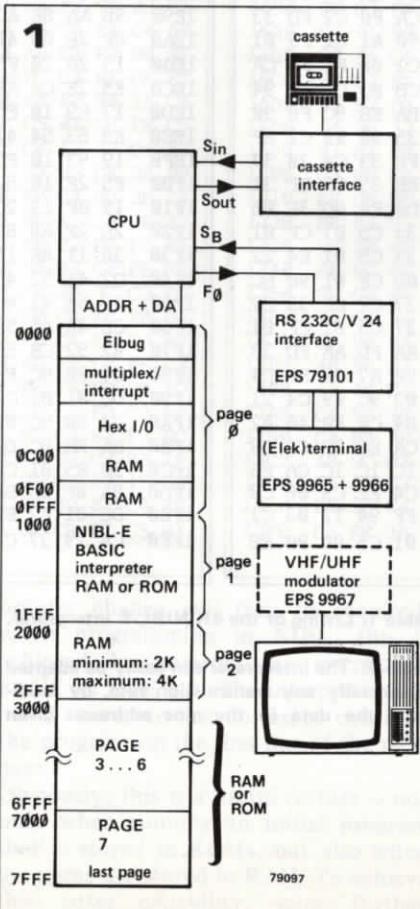


Figure 1. The complete system.