11-02 — elektor november 1977

experimenting with the SC/MP

ex|perimenting

Before commencing, it is perhaps worth
reviewing what is ‘on the programme’
for the next few articles in this series,
The flowchart in figure 1 should help
the reader to decide if he wants to
pursue the topic further. The series calls
a temporary halt after part 4 of the
series, by which time the budding
programmer should possess a micro-
processor incorporating a cassette-
interface and hexadecimal in- and out-
puts (using seven-segment displays). For
the future, a TV-interface and keyboard
are planned, which will convert the
development system into a full-grown
microcomputer.

SC/MP

SC/MP (pronounced ‘scamp’) denotes a
National Semiconductor microprocessor,
type ISP-8A/500D, and stands for
Simple Cost-effective Microprocessor.
The SC/MP is a modern, low-cost micro-
processor. Its design structure or ‘archi-
tecture’ makes it ideally suited to simple
applications. Simple two-chip systems
(CPU + PROM) can be realised directly
using the SC/MP, and assuming that
high operating speeds are of secondary
importance, the SC/MP can also be used
to construct relatively complex systems.
There are two versions of the SC/MP
available at present. The first and older
version (type number ISP-8A/500D)
uses P-channel-MOS technology, whilst
the more recent SC/MPII (ISP-8A/
600D) is an N-MOS version. The two
versions are fully compatible, the only
difference being that the later version
has a higher speed capability, lower
power dissipation and requires only one
supply voltage.

The SC/MP has 40 pins, of which a
number are TTL-compatible. The data-
and address buses have tri-state outputs.
For most applications, a detailed knowl-
edge of the internal architécture of the
IC is not required, and it can be looked
upon simply asa ‘black box’. The follow-
ing features however should be noted:
the SC/MP has an internal clock gener-
ator; this requires only one external
component, which can be either a
quartz crystal (f, = 1 MHz or lower) or
a capacitor (C=500pF or greater).
Since the SC/MP is a static micro-

By far the best way to gain a clear
understanding of the complexities
of microprocessors is through the
practical experience of actually
constructing and learning to
operate one of these ‘micro-
computers’. For this reason several
manufacturers have brought out
so-called ‘development systems’,
which are designed to familiarise
the user with the particular system
in question. By building such a
development system oneself, one
can not only save considerable
expense, but also gain an
interesting insight into the field

of microprocessor hardware.

H. Huschitt

wih Ilhe SCIME_1.

processor, the clock frequency can be
lowered as much as desired so that the
individual programme steps can be
easily distinguished.

Two pulses of the clock oscillator are
required for each so-called ‘microcycle’.
In the case of a 1 MHz crystal each
microcycle takes 2x 1 us=2us. De-
pending upon the instruction which it
must execute, the basic machine cycle
(the combined fetch and execution of a
single instruction) requires between 5
and 22 microcycles.

SC/MP registers

The SC/MP has 7 registers which are
accessible to the user (programmer), as
shown in figure 2.

® Programme counter (PC, identical to
the pointer register ())

The programme counter is a 16-bit
register which contains the address of
the next programme instruction to be
executed by the microprocessor. In
order to ensure that all registers in the
microprocessor are cleared to zero when
the supply is switched on, the NRST
(negative reset input) pin must first be
set to logic state ‘0’, thereby resetting
all the registers. The first ‘1’ or high
state will then cause the SC/MP to start
up. The first instruction is found under
the address @P@@1 (i.e. not @PPR). In
programmes with a (QQQ start address
the first instruction must either be a
non-memory reference instruction or a
NOP instruction (No Operation). Note
@ = Zero, O = letter o.

In order to fetch an instruction from
memory, the address, i.e. the content
of the PC is put on the address bus.
During the NRDS (negative read data
strobe) the content of the addressed
memory location is put on the data bus,
and this instruction byte (byte = 8-bit
word) is then delivered to the instruc-
tion register and decoded by the instruc-
tion decoder. If the MSB (Most
Significant Bit) is a ‘1’, then the uP
knows that the instruction actually
consists of two bytes, in which case,
after incrementing the PC, the processor
performs a second fetch to obtain the
full instruction.

It is worth noting that the PC is always
incremented before the instruction is

|
J

experimenting with the SC/MP

elektor november 1977 — 11-03

1

Reading
this articie?

Interested in
microprocessors?

How did
you reach
this paint?

shortly)

Study digital electronics
('Digibook” will be appearing

have a basic
knowl of
information
processing?

Read previous articles on
MICTOPIrOCessors
(Elektor 29,30)

Enthusiasti
CcOnstructor

Read the first three
articles on the SC/MP,

build and operate. sysem

Buy ready-built development

Attend relevant software
courses

Stop after part 4. Result:
hexadecimal 7-segment
microcomputer with cassette-
interface

Wait for TV-interface
and keyboard

Aim: private computer
system and programming
skills

9846 -1

executed; the only exception to this
rule is in the case of jump instructions,
when the instruction is executed before
the PC is incremented. The actual
execution of an instruction requiring
arithmetical or logical operations is
carried out by the ALU. The whole
cycle is then repeated with the next
instruction, which is contained in the
numerically adjacent address to the
first.

Figure 1. This figure gives an idea of what is
‘on the programme’ for the SC/MP series.

® Pointer-registers (PTR)

In addition to the programme counter
the SC/MP contains three other pointer
registers PTR1, PTR2 and PTR3. These
are also 16-bit registers used primarily
to store addresses. The content of the
PC can be exchanged with that of a
pointer register so that the programme
jumps to the address previously stored
in the pointer. The jump back to the
main programme will only occur after a
second jump instruction (XPPC = Ex-
change Pointer with Programme
Counter). The main programme then
picks up where it left off, i.e. at the
address which it temporarily stored in
the pointer register.

A simple example may help to clarify
this manoeuvre. Imagine that Tom
(= PC) is hungry and is taking regular
bites out of an apple. Dick (= PTR) has
had enough, but he’s holding a half-
eaten pear. At a certain point they are
told to swap (XPPC). Tom now has the
pear, which he proceeds to demolish
with the same regularity originally
reserved for the apple. After a second
XPPC command Tom find himself
again holding the apple and, since Dick
wasn’t hungry, Tom can continue at
exactly the same point that he had
reached before the first exchange.
Pointer registers are extremely useful
when executing such chores as compil-
ing and reading or storing tables.

® Accumulator

The accumulator is an 8-bit register by
means of which all manipulation of data
is carried out. Only data which are
present in the accumulator can be
processed by the ALU, and conversely
data may only be read into memory via
the accumulator. When new data are
entered into the accumulator, the data
previously held there are lost.

® FExtension Register (E)

The extension register, which is also
an 8-bit register, serves, as its name
suggests, as an extension of the accumu-
lator. If information present in the
accumulator needs to be retained, then
it can be stored in the extension register.
In addition, the extension register can
be used as a parallel-series or series-
parallel converter. To this end it has a
series input (SIN, pin 24) and a series
output which is buffered by a flip-flop
(SOUT, pin 23). An SIO instruction
(Serial In/Out) shifts the content of E
one bit to the right. The information
present at SIN then becomes the highest
bit in the extension register and the
lowest bit is simultaneously shifted
into the buffer flip-flop.

® Status Register (SR)

This 8-bit register performs numerous
useful functions which will be examined
later in the article.

Hexadecimal notation

The only language that a computer
understands is its particular ‘machine
language’ or combination of ‘noughts’
and ‘ones’. For example the instruction

11-04 — elektor november 1977

experimenting with the SC/MP

Figure 2. The pin configuration of the SC/MP.
2 Table 1
Figure 3. Diagrammatic representation of a ‘ .
two-byte instruction. decimal hexadecimal
0 o
Figure 4. Block diagram of the basic version 1 1
NWDS a0] VGG of the SC/MP development system. r 73
NRDS 39]-= NADS 3 3
ENIN 38 x2 Figure 5. The circuit of the RAM 1/O-card. 4 4
ENOUT 37 &1 5 5
BREQ 36} AD 11 Table 1. Hexadecimal notation uses letters ? 3
NHOLD 35} AD 19 as well as numbers. 8
NRST 52}~ AD 09 8
CONT 33} AD §8 T « QA
De7 -0 ||| 3 " :
DB6 51}~ AD 96 e &
DBS [30}= AD @5 bi o
DB4 [}~ AD 04 7] l [] - s
DB3 78}~ AD §3 opcode |m| ptr 15 F
DB2 77}~ AD @2
DB1 3\ [~ AD 91 byte1 16 10
DB@ ‘[z~ AD 99 17 11
SENSE A [Zi}=—SIN
18 12
SENSE B [73]-= SoUT 19 13
FLAG® -—&] 22}= FLAG 2 20 14
vss [F] %:FLAM all 11]]e - e
9846.2 disp. 22 16
9846-3 23 17
Dyeas 2 18
etc. etc.
=
ADDRESS BUS
Tri-state buffer
ADDRESS SWITCH
S
=y R
2o 8 IG
M
P
DATA SWITCH
Tri-state buffer
DATA BUS
9846.4
11 111 1 is recognised b The latter is the mnemonic abbreviation rocessors demands a certain pro-
£n Yy p p

the SC/MP as signifying: load the
accumulator with the content of the
memory location whose address is in
pointer register 3, then increment the
content of this pointer by 1. It is appar-
ent that when the programmer comes to
write out or assemble his programme
both the machine language and the
longhand translation prove excessively
unwieldy. For this reason either so-
called assembler language or hexa-
decimal notation are used.

The above instruction may thus be
written either as C701 or LD @] (3).

or assembler language, used in the
SC/MP software, whilst the former is
simply the hexadecimal version of the
binary code. The assembler language
consists of a group of mnemonic letters
and symbols (not binary numbers). It
can be processed by an assembler
programme in the computer, the result
being the machine language programme
which can then be run in the computer.
The derivation of hexadecimal from
binary code was discussed in a previous
article (Elektor 30, October 1977),
however since working with micro-

ficiency in ‘thinking’ and being able to
calculate in hexadecimal code, the
following examples should help to
familiarise the prospective programmer
with this number system.

Addition: @C
oC
Lo
18

Explanation: twelve (C) plus twelve (C)
equals twenty-four, which equals one
times sixteen plus one times eight (see
table 1).

experimenting with the SC/MP

elektor november 1977 — 11-05

3

]
’ 10
write & (read

2
N8
1

IC1 = 74155

N1,N5 N6 N1S,N22 = IC2 = 7404
N2,N3,N4,N7 = IC3 = 7400

IC4,1C5 = 7475

IC8,IC7 = MM2112

N9 ... N14=IC8=7404
NB,N15,N16,N28,N30 = IC9 = 7404
IC10. .. IC13 = CD4066

N20,N21,N25,N26 = IC14 = 7400
N23,N24,N27 N28 = IC16 = 7400

FF1=2%IC15 = %7474

i /4

5V
13 16| 14 %
9 CE R/W o7 -Op7
Ft o5 Op6
ol 08| Q@6
Ice o4 Op4 G AD
, MM2112 o O3
a0
ps | O
D 920
g3o
’ #40-
#50-
960

NADS

TR

wd b

IC9 IC14 ICi5 IC16

o T

NRDS
DO
Substraction: @Q@C3
091F
PpA4
Explanation: fifteen (F) from three

does not go, so borrow one (= 16).
Fifteen from nineteen is four (4); one
was borrowed from C, so that now
becomes B. Eleven (B) minus one is
ten (A). The result is thus PQA4.

When subtracting numbers there is the
risk that the result will be negative. It is
no use placing a minus sign before the
offending number since the micro-
processor will not recognise it, so in this

case the following process occurs. To
simplifiy the explanation let us take the
example of an up-down counter with
decimal outputs which counts down to

Zero,

counter state P01
one step down (110]0)
another step down 9999

If instead of decimal the counter
displayed hexadecimal, then for the
last step shown above, the counter
would read FFFF. FFFF is now simply
defined as the hexadecimal represen-
tation of ‘=1’ or the ‘two’s comp-
lement’™ of 1.

By applying the rules of substraction it
is also possible to calculate the positive
values assigned to represent the negative
numbers:

(19009 (10000
— 0001 — 00A4
FFFF FF5C

it therefore follows that: —0@@1 = FFFF
and that —@PA4=FF5C.

* The two's complement of a binary number

i1s defined as the number obtained by in-
verting each bit and adding 1 to the result.
For example: the two's complement of
0001 is 1110 +1=1111.

11-06 — elektor november 1977

experimenting with the SC/MP

—

Parts list to figures 5 and 7

Resistors:

R3,R30 = 220 2
R4...R11,R31=330 02
R12... R35=4k7

(no R1,R2)

Capacitors:
C1...C7=10n

Semiconductors:

IC1 = 7415656

1C2,1C8,I1C9 = 7404
IC3,1C14,1C16 = 7400
IC4,I1C5 = 7475

1C6,IC7 = MM2112 (National)
IC10. .. 1C13 = CD4066
IC15= 7474
D1...D9=LED (D9in S5)

Miscellaneous:

S1=DPDT

S2 = SPST, e.g. Schadow
‘Digitast’

S3 = SPST

S4 = SPDT, e.g. ‘Digitast”

S6 = SPDT, e.g. ‘Digitast’, with
LED

56,57 = 8-bit DIP-switch

The highest bit (bit 15) of the numbers
designated as negative, is, as the above
examples make clear, ‘1’. The micro-
processor recognises this bit as indi-
cating a negative number. In the case of
an 8-bit word, capable of representing
256 numbers, the largest possible
(positive) number will therefore be
@1111111=7F = 127. That means that,
including zero, an 8-bit word may
represent 128 positive numbers. The
smallest (negative) number possible is,
logically enough, 128 —256= —128,
which equals 10000000 = 80.

Instruction set

The number of possible instructions for
the SC/MP is not particularly large, only
46. Although this in no way limits the
range of possible applications, it places
greater demands upon the amount of
storage capacity required and inevitably
renders the programme slightly more
cumbersome. Thus for extremely large
and complex processing chores it is
recommended to invest in one of the
more sophisticated and expensive types
of microprocessor.

A complete description of all 46 instruc-

tions would occupy too much space,
the reader is therefore referred to the
SC/MP data sheet. Some instructions
will be examined later in the article.

Instruction format

The SC/MP recognises both one- and
two-byte instructions (one byte is
& bits). The SC/MP instruction guide
lists ‘operation codes’ (opcodes) in
hexadecimal form for each instruction.
For some instructions it is necessary
to indicate which pointer register is
being referred to. This is done by

experimenting with the SC/MP

elektor november 1977 — 11-07

sSs3adaav
ort8evrS9 L

:
:

'
”

3 0000
oLOv 60V 9

1NO

'@ =@ s0 <0

sNna ss3adoav

-
e
S
1
?

3 o—0
I\? oo'r

20EOQra sasasLasa Lo

g

r
»

’
”

0

TS ot

0
»
’
’
)

oQz0+0:0 ;
9 =0s0@ 0
sna viva

)
&

adding the number of the pointer to
the opcode. For example, XPPC 3
means ‘exchange pointer 3 with PC’.
The hexadecimal opcode basis for this
instruction is 3C and the instruction
refers to pointer 3, so in this case the
instruction becomes 3C+3=3F
(=00111111).

In the case of two-byte instructions,
the opcode is followed by the ‘displace-
ment’ (see figure 3). For all two-byte
instructions this displacement is a
number between —128 and +127. The
only exception to this rule is the delay

Figure 6. Printed circuit board layout for the
RAM 1/O-card (EPS 9846-1).

Figure 7. Component layout of the RAM-
pc.b. This board also accomodates all the
control switches.

instruction (DLY), when the displace-
ment is between () and 255. Basically,
the displacement gives additional data
required for a particular instruction.
For instance, if the first byte specifies
‘delay’, the second byte will specify
the duration required; or, if the first
byte is a ‘load’ instruction, the second
byte either gives the data or the location
where the data are to be found.

Address modes

When data are to be stored in or read
out of a specific memory location, it is

11-08 — elektor november 1977

experimenting with the SC/MP

8
VGG fe—+
SAC] u s f
Vss +5v
NHOLD (] |: {l CARD ENABLE
ENIN (] [[) CARD ENABLE
BHEQO D i
3
AD@9 _ﬂL /E AD @9
sc/mMp ‘ 5/ ADDRESS-BUS I'E D B
EA'/BEPQ-an :j..(/ /b -1/0 -~
ADPO [} y/ m— Y
L i
<] — . r/_Jt_:_
. i/ ATA-BUS) ‘
oBpoY L7/ .’E- DBPY
NRST (] f2 § nsT
cont {J | . et
naDS [2 e
NRDS 2 NRDS
X; xpNWDS[p F NWDS
;a A 9846.8
1h[jHl
X —tal

Figure 8. This diagram shows the various
connections between the SC/MP and the
RAM-card.

Figure 9. The SC/MP printed circuit board
(EPS 9846-2).

Figure 10. The component layout of the
SC/MP p.c.b.

Parts list to figures 8 and 10.

Resistors:
R1 =4k7

Semiconductors:
IC = ISP-8A/500D (SC/MP)

Miscellaneous:
1 MHz crystal

clear that the total instruction must
contain the address of the location
which is being referenced as well as the
Read or Write command. Two bytes
would be needed to be able to address
every memory location of a 64k
memory (= 65,536 locations). Further-
more, one byte is required for the
operation code, so that a total of three
bytes would be required for the com-
plete instruction.

Several types of microprocessor do in
fact use this instruction format. How-
ever, the SC/MP adopts a different
method requiring only two-byte instruc-
tions. This is achieved by using the
following address modes:

® P(C-relative addressing

The content of the PC is used to refer-
ence the required address (= effective
address = EA). The effective address
is obtained by adding the ‘displace-
ment’ to the content of the PC:
EA = (PC) + (disp.). ((PC) signifies ‘the
content of PC’). Using this method
memory locations both ‘above’ and
‘below’ the content of thé PC can be
addressed, since the displacement may
be either positive or negative. The
highest effective address is logically
(PC) + 127, and the lowest (PC) — 128.
It is clear that this method does not
permit every address of the 64 k mem-
ory to be referenced. To achieve this it
is necessary to use ‘PTR-relative-'or
‘indexed addressing’.

® [ndexed addressing

A 2-byte address is loaded into one of
the pointers and the effective address
is obtained by adding the displacement
to the content of the pointer:
EA = (PTR) + (disp). Using this address
mode it is possible to reference every
location in the 64 k memory, since the
pointer may be loaded with any address.
Bits @ and 1 of the instruction byte are
used to inform the microprocessor of
the number of the pointer in question
(see figure 3).

® Auro-indexed addressing

This address method is virtually the
same as indexed addressing, the only
difference being that the content of
the pointer is automatically in-
cremented by the value of the displace-
ment.

When the displacement is negative, the
pointer content is first altered and then
the instruction is executed; when the
displacement is positive the instruction
is first executed and then the pointer
is modified:

neg. disp.: EA = (PTR) + (disp)

pos. disp.: EA = (PTR)

In this address mode bit 2 of the first
instruction-byte, the ‘modify-bit’, is
always ‘1’. This is indicated in the
assembler language by the symbol @,
which signifies the use of auto-indexed
addressing.

In the case of both indexed and auto-
indexed addressing, the four highest bits

of the pointer remain unchanged
since the displacement is a number
between —128 and +127. |
With regard to these first three address
modes it should be noted that when the
displacement is —128 (X'8(), it is no
longer used to obtain the effective
address. In this case it is replaced by
the content of the extension register:
disp.= —128 > EA = (PTR or PC) +(E)!.

® [mmediate addressing |
This fourth address mode is not really
a method of addressing at all! No address
is referenced, the microprocessor simply 1
interprets the second instruction-byte
as the required data. For example, the
instruction LDI X'35 (LDI= Load
Immediate) will result in the micro-
processor loading the accumulator with
X'35 without this number having to be
stored somewhere in memory (National
Semiconductor use the symbol X' to
indicate that what follows is a hexa-
decimal number).

RAM 1/O-card

Having hopefully digested the above

theory, it is time to get down to prac-
tice. The main requirement is a PROM

or RAM in which to store the pro-

gramme for the SC/MP. In order to

programme a PROM a special piece of

equipment is required, which unfortu-
nately is rather expensive.

A cheaper solution is to use a RAM in

conjunction with ‘peripheral’ hardware

I

experimenting with the SC/MP

elektor november 1977 — 11-09

(@

o

0000000000

I

ﬁ

S
R\

=\

a846.2

=

9

ap
[+

32 34 38 38
a3 03 0370 3 0
o°o°o°
[} (-] -]

o
-
M
g0
fo

=28
o

o

24 26
28 0 =250 27 0

22
Q
oO

-]

which will allow a programme to be
written in. This is illustrated in the
block diagram in figure 4. Both the
CPU and the RAM are connected to
the address and data buses. Two 8-bit
DIP switches are also connected to the
data and address buses via tri-state
buffer-ICs. These switches form- the
peripheral hardware which will enable
the programme to be written in. When
switch S is in the ‘pgrm’ position, a
programme can be loaded into the RAM.
The position of the address switch
determines in which location the data
read in by the data switch will be stored.
In this way any desired programme may
be written into the RAM. Since an 8-bit
switch is used for the addresses, the
available storage capactity of the RAM
is limited to a 256 x 8 memory.

When switch S is in the ‘line’ position,
the microprocessor will begin to operate
and execute the programme stored in
the RAM. A visual display is provided in
the form of 8 LEDs. During program-
ming, these LEDs will indicate the
information present on the data bus.
When the programme is running, the
LEDs can also be used to display data,
providing that they are ‘addressed’.

The circuit

Figure 5 shows the complete ‘hardware’
for the SC/MP memory and peripherals.
The 256 x 8 bit RAM is formed by two
MM2112 ICs (IC6, IC7). Addresses are

gated via buffers IC12 and IC13 onto
the parallel-connected address inputs by
means of switch S6. Since tri-state
buffers are still fairly expensive,
‘normal’ analogue switches, type
CD 4066, are used instead. In the same
way, data are gated onto the data bus
lines via data switch S7; these data are
displayed visually by means of LEDs
D1 ...D8. Since these LEDs are driven
by TTL-ICs (IC4, IC5), the inputs of
the integrated analogue switches (IC10,
IC11) must also be driven by TTL-
outputs, hence the need for the inverters
N9 ...Nl6.

The address-bits AD@8 ... ADIQ are
connected to IC1 which functions as
an address decoder. These bits deter-
mine which part of the system is ad-
dressed. For the time being, of the 8
available outputs only 3 are used,
namely the @, 1 and 2 outputs which
address the RAM, the LEDs and the data
switch (DS) respectively (see table 2).
The remaining decoder outputs can be
implemented at a later stage to address
additional memory or peripherals. The
system is controlled by means of five
switches:

® S1a-S1b, the line-programme switch
In the ‘line’ position the SC/MP assumes
command of the data- and address buses,
whilst S6 and S7 are disabled; in the
‘pgrm’ position a programme may be
loaded into the RAM, by means of S6
and S7.

® S2 clock-write switch

By operating this switch, the infor-
mation represented by the position of
S§7 is written into the RAM; S2 will
only function with S1 in the ‘pgrm’
position.

® S3, read-write switch

The content of the RAM can be checked
by setting S3 in the ‘read’ position. The
LEDs display the content of the mem-
ory location addressed by S6. S3 will
only function if S1 is switched to
‘perm’.

® S4, NRST switch

As soon as S4 is operated, all SC/MP
registers are cleared. Once the start
signal is given, the SC/MP begins to
execute the programme, starting with
the instruction in location @@@1. The
start command is given by switch S§5.

® S5, halt-reset switch

Many programmes contain ‘halt’ instruc-
tions. In the case of such an instruction
the SC/MP resets ‘halt’ flip-flop FF1,
so that the CONT-input of the SC/MP
is pulled low and the programme is
halted. This condition is indicated by
LED D9. Operating S5 sets FFI1, so
that the SC/MP recommences execution
of the programme.

The circuit shown in figure 5 contains
a large number of in- and outputs. Most
of these must be connected direct to

11-10 — elektor november 1977 experimenting with the SC/MP

1"

LL 986

experimenting with the SC/MP

elektor november 1977 — 11-11

12

Figure 11. The wiring plan for the two cir-
cuit boards. All solder connections should be
complete before mounting the MOS-ICs (that
includes the SC/MP).

Figure 12. The complete ‘hardwired’ version
of the system, ready to execute its first
programme.

the SC/MP; the details of the various
connections are shown in figure 8. Note
that address-bit 19 of the RAM I/O-
card is at logic ‘0’. Since this input is
formed by the parallel connection of
two TTL-inputs (pins 1 and 15 of IC1),
it cannot be driven directly by the
SC/MP. Fortunately, however, this does
not present a problem, since only three
peripheral addresses are required at
present (see table 2).

For the time being, the card-enable
input and output are simply inter-
connected. At a later stage the input
can be used to disable the RAM-card,
and this can prove extremely useful
in the case of larger systems.

Construction

Two printed circuit boards were
designed to accomodate the complete
system. The circuit shown in figure §,
including the various switches, is
mounted on the first board (see figures
6 and 7). The second board (see figures
9 and 10) takes the SC/MP, the quartz
crystal and a resistor (R1). Since this
board later becomes superfluous, it has

a fairly ‘general purpose’ layout, thus
enabling it to be reused for other
applications. This does tend to compli-
cate the wiring slightly, but if the wiring
diagram in figure 11 is followed exactly
there should be no problems.

The use of plug-in connectors is rec-
ommended, as this means that the
‘hardware’ can also be easily altered.
How the completed version looks can be
seen from figure 12 (and this month’s
cover picture).

Supply

As is apparent from the circuit diagram,
two supply voltages, +5 Vand —7 V, are
necessary. The +5V supply must be
capable of delivering a current of at
least 0.5 A, and the —7V supply a
current of approx. 100 mA. Both
supplies should of course be stabilised.
In both cases an IC-stabiliser is the best
solution.

In view of future extensions to the
circuit it is advisable to use a +5V
supply that can deliver a current of
1.5A.

The first programmes

A prerequisite for operating the SC/MP
is the SC/MP data sheet (Pub.-Nr.
420305227-001 A). When compiling a
programme the above-mentioned
‘SC/MP Instruction Guide’ is also
virtually indispensible. The programme
examples assume that the user already
has both these publications.

Table 3 shows a simple add programme
arranged in the conventional programme
form. The first column contains the
address of the first instruction-byte of
each instruction. NOP (no operation) is
a 1-byte instruction, and the following
byte therefore belongs to the next
instruction. The second instruction is
a 2-byte instruction, so that the first
byte is stored at P@Q1, the second byte
at 0002.

The second column contains the instruc-
tions and the operand addresses in
(hexadecimal) machine code. The first
two columns represent the results of the
assembler programme. As mentioned
earlier, an assembler programme can be
used to translate a programme written
in assembly language (the mnemonic
letters and symbols in column 3) into
the necessary logic (ones and zeros)
that make up the machine code.
Column three contains the instructions
and address symbols written in assembly
language. Address symbols consist of a
maximum of 6 randomly chosen letters
or digits (without punctuation signs;
the first symbol is always a letter). The
assembler ‘reads’ the address symbols
and calculates the required displacement
values.

The last column contains an explanation
of the programme steps; it has no effect
upon the assembler.

As is apparent from table 2, when
addressing the RAM, the LEDs or the
data switch (DS), only the two highest
address bits are decoded. This naturally

11-12 — elektor november 1977

experimenting with the SC/MP

has certain consequences for the pro-
gramming. For example, the LEDs will
be referenced by every address
beginning with Q1. In the programme,
PTR1 is used to address the LEDs, and
PTR2 for the DS (only the ‘higher’
byte of the registers is used). In order to
load the pointers, the information is
first loaded into the AC, and the con-
tent of the AC is exchanged with that of
the ‘higher’ pointer byte. The instruc-
tion ADD@M(2) causes the information
represented by the position of the data
switch to be added to the content of
the AC (= @0); the result of this oper-
ation is stored in the AC. The next
instruction results in the content of the
AC being displayed by the LEDs. There
then follows a HALT-instruction and
the programme is interrupted. Another
number may now be fed in via the data
switch, and the programme restarted by
means of the halt-reset switch. The next
instruction is a jump command to
‘LOOP’. LOOP is an address symbol,
in this case a ‘label’, and labels are always
followed by a colon (i.e. LOOP:).
The content of the PC is currently
PPQE, however this must be altered to
@997 (back to LOOP). The content of
the PC must therefore be reduced by
0007 the value of the displacement of
the jump-instruction thus becomes —07
or F9 (two’s complement).
A part of the programme is now ex-
ecuted for the second time, the ‘new’
DS information is added to the previous
result and the outcome displayed by
the LEDs,
Finally, tables 4 and 5 give two further
programme examples. Table 4 contains
a programme which converts the micro-
processor to a(software) binary counter.
The LEDs display the counter output,
the count being continuously in-
cremented by 1. The programme in
table S is for a ‘running light’; beginning
from the left the LEDs light up in
succession, the whole cycle being
continuously repeated.
Although it may seem rather an over-
investment in hardware, using a micro-
processor to light up a few LEDs, the
point is, of course, that these pro-
grammes are intended to illustrate the
operating principles and programming
techniques of the microprocessor.
Experimenting with programmes such
as those given above is by far the best
way to come to grips with the challenge
of microprocessor technology.
(To be continued)
M
Literature:
1. SC/MP data-sheet,
pub. no. 420305227-001' A
2. SC/MP instruction guide,
pub. no. 4200110 A
3. SC/MP technical description,
pub. no. 4200079 A
4. SC/MP microprocessor applications
handbook,
pub. no. 420305239-001 A
5. SC/MP programming and assembler
manual, pub. no. 4200094 B

Table 2

Table 2. The two highest bits of the first
instruction byte determine which of the
functional units is addressed.

Table 3. A simple programme for the ad-

00xx = address RAM

@1xx = address LEDs

02xx = address DS (data switch)
(x = any value)

dition of binary numbers.

Table 4. A programme to use the SC/MP as
a binary counter.

Table 5. An example of a ‘running light'

programme.
Table 3
Add programme
START = 0000
0000 08 NOP :
0001 Ca01 LDI 9 ;load @1 into AC
0003 35 XPAH 1 ;01 inPTR1bit8...15
0004 C4a02 LDI @2 ;load @2 into AC
0006 36 XPAH 2 ;02in PTR 2
LOOP:
0007 F200 ADDQ (2) ;add (EA) to (AC)
0009 C900 ST (1) ; (AC) in EA indicated by PTR 1,
000B 00 HALT ; and stop
@eecC 90F9 JMP LOOP ; jump to LOOP
e END ; end of assembler instructions
Table 4
Binary counter
START = 0000
0000 a8 NOP ;
0001 o0 HALT H
0002 cam LDI 01 ;load PTR 1 with EA
0004 35 XPAH 1 ; of LEDs
0005 C400 LDI 00 i load counter, one
0007 C809 ST COUNTER ; RAM byte
LOOP:
o009 ABQ7 ILD COUNTER i increment counter
000B C900 ST (1) ; 'store’ counter state in LEDs
200D 8FFF DLY X'FF ; delay instruction
00GF 90F8 JMP LOOP ; jump to LOOP
COUNTER: ; label and instruction to
e BYTE assembler to reserve
a RAM byte
e END
Table 5
Running light
START = 0000
0000 08 NOP
0001 00 HALT i
0002 ca01 LDI 01 ;load EA of LEDs
0004 35 XPAH 1 ; inPTR1
0005 Cc401 LDI @1 ; load @1 into AC
LOOP:
0007 Co00 STO(1) ; (AC) in LEDs
2009 1E RR ; lAC) one bit to the right
000A 01 XAE ;store (AC) in E
0008 8FFF DLY X'FF ; delay
000D 40 LDE ;(E)in AC
Q0QE 90F7 JMP LOOP ;s jump to LOOP
e END g

