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experimening

The majority of the SC/MP registers
which are accessible to the programmer
were discussed in the previous article
(Elektor 31). However there remains an
important ‘multi-purpose’ register still
to be examined, and that is the status
register,

Status register (SR)

The status register is an 8-bit register
which, like the extension register,
functions in conjunction with the
accumulator (AC). By means of the
instruction CSA (copy status to AC),
the contents of the status register can
be transferred to the AC, whilst the
CAS-instruction (copy AC to status)
does just the reverse.

A second similarity between the status
register and the extension register is
that in both cases a number of bits are
available on external pins.

The functions of the various bits of the
status register are shown in figure 1.
From right to left: bits @, 1 and 2 are
the so-called ‘users flags’ (F@, F1 and
F2). By means of instructions these
flags can be set or reset. For example,
the instruction LDI X'@2 followed by
CAS results in flag 1 being set (i.e.
storing ‘17). This ‘1’ is maintained until
the contents of the AC, with a in bit 1,
are once more copied into the status
register. Among other things, the three
flags can be used in conjunction with a
driver stage to directly control various
peripherals such as lamps, relays, etc..
Bits 4 and 5 of the status register are
the ‘sense’ inputs, i.e. Sense A (SA) and
Sense B (SB) respectively. By means of
these two inputs information up to two
bits long can be transferred to the CPU
using the CSA instruction. The contents
of bits 4 and 5 are determined exclus-
ively by the logic level of pins 17 and
18 of the SC/MP. The CAS instruction
therefore has no effect upon these two
bits.

An important function of the sense
inputs is to set up programme loops.
How this may be done is shown in
table 1. First of all the contents of the
status register are transferred to the AC.
Then, one bit at a time, the contents
of the AC and the byte 0Q100P@Q are
ANDed together, the result being once
more stored in the AC. In the case

Among the topics discussed in this
second part of the series on the
SC/MP microprocessor are pro-
gramming techniques, the SC/MP
status register and address
decoders. In addition a CPU card
is described, which is designed to
accomodate both the CPU itself
and future ‘monitor software’.
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where SB is ‘1°, the result of the above
operation will be Q10000).

Thus: (SR) = xxIxxxxx
(AC) after CSA = xxIxXxXxxx
AND with = 00100000
(AC) = 0100000

(x = don’t care)

If SB is ‘0’ however, then the contents

of the AC are also zero and a jump is

performed to LABEL 1. The byte

00100009 or X'20 is a ‘mask’, its

function being to sift out the non-

relevant bits. The above type of oper-

ation is a typical example of ‘bit-

handling’, i.e. the manipulation of single

bits.

Further examples of bit handling are:

® setting a particular bit of a byte and
leaving the rest unaltered:

CSA XXXXXXXX
ORI X'04 00000100
CAS XXXXX1xx

(x = don’t care, but in this case also
unchanged!)

® erasing one bit and leaving the rest
unaltered:

CSA XXXXXXXX
ANI X'FB 11111911
CAS XXXXXPxx

® inverting a bit and leaving the rest
unaltered:

CSA XXXXXXXX
XRIX'08 00001000
CAS XXXXXXXX

In addition to being a sense input, SA
can also function as an interrupt input.
This is the case when bit 3 of the SR,
the interrupt enable flag, is ‘1’. This flag
can be set and reset by the instructions
I[EN (enable interrupt) and DINT
(disable interrupt). The interrupt fa-
cility will be examined in greater detail
at a later stage.

Bits 6 and 7 of the status register have
an arithmetical function. Bit 7, the
carry/link bit, is automatically set
during all arithmetical manipulations as
soon as there is a l-carry from bit 7
of the AC. For example:

10000000 or X'8) or —128
10000000 X'89 128
100000000 X100 —256

In this case the carry/link bit indicates
whether the result is negative or not. If
there is no carry from bit 7, then the
carry/link bit is reset. The CY/L bit can
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1 Table 1.
7 el a]l3]2]a]e
CSA ; transfer (SR) to AC
CY/U OV SB|SA|IE|F2|F1|Fo ANI X20 ; AND the contents of AC
SR and 00100000
JZ LABEL 1 ; If (SB) =0 jump to
label 1
il LD. ; If (SB) = 1 continue
18 17 22 21 19 programme
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be regarded as an extension to the left | input and output. The address infor-
of the AC. In all arithmetical instruc- | mation is only present on the data bus Table 2.
tions the ‘content’ of the CY/L bit is | for a short period. To be able to address
added to the contents of the AC. The | a memory (which is larger than 4 k) in
CY/L bit is set/reset by means of the | this way it is obvious that this address
instructions SCL (set carry/link) and | information must be stored in an exter- DBO — AD12
CCL (clear carry/link). In the case of | nal register. The remaining four data DB1 — AD13
the instructions RRL (rotate right with | bits which are available during the DB2 — AD14
link) and SRL (shift right with link), the | NADS are utilised as flags. gg 2 - :215
CY/L functions as bit 8 of the AC. The R-flag is ‘1’ when a read cycle is DB & = |-i=|;|;ag
Finally, bit 6 of the status register is the | executed, and ‘0’ for a write cycle. DB6 — D-Flgg
overflow bit (OV) which is automati- | When the I-flag is ‘1’ it signifies that the DB7 — H-Flag
cally set as soon as there is a carry | first byte of an instruction is being
from bit 6 to bit 7 of the AC, and is | fetched. When the D-flag is ‘1’ it indi-
reset in the absence of this carry. The | cates the fetch of the second byte of a

overflow bit can be used to prevent
calculational errors in the CPU. A good
example is the addition of two positive
numbers where the result might other-
wise appear negative:

Q1000000 or X'4Q or 64
01000000 X'49 64
10000000 X'8p —128

1/0 status on the data bus

In order to address a 64 k memory at
least 16 address bits are necessary.
However, as many readers have prob-
ably realised, the SC/MP has only 12
address lines. The remaining four bits
are in fact multiplexed on the data bus.
During the NADS (negative address
strobe), high-order address and status
information, not data, is present on the
8-bit data bus. Table 2 shows how the
4 most significant address bits along
with 4 status bits are multiplexed on the
data bus, and figure 2 shows how the

SC/MP controls the timing of the data

delay instruction. Finally a ‘1’ on the
H-flag denotes the execution of a halt
instruction.

Page structure of the memory

Neither the programme counter nor the
pointers have an automatic carry from
bit 11 (the 12th bit) to bit 12. This
means that when the counter reaches
X'QFFF it increments not to X' 1009,
but to X'@QPQ. In practice the next
instruction is therefore fetched from
address X'0P@@. The same holds true
for the pointers. If e.g., the address
X'S5FF( is stored in PTRI1, then the
instruction ST 1F (1) will not store
the (AC) at address X'60Q0F (even
though X'SFFQ+ X'1F = X'60QF), but
instead at address X'SPQF. This also
applies to auto-indexed addressing.

The four most significant bits of the
PTRs and PC can only be altered by the
instructions XPAH and XPPC. The

Figure 1. Diagram showing the function of
each bit of the status register and their pin
connections.

Figure 2. SC/MP data in- and output timing.

Table 1. Specimen programme for testing a
sense-bit.

Table 2. During the NADS the 4 most signifi-
cant address bits along with 4 status bits are
loaded onto the data bus in the following
manner.
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contents of these four bits form the
‘page-address’ of the memory. A section
of memory, the addresses of which
stretch from x@@® up to and including
xFFF, is called a page. The SC/MP is
unable to ‘turn’ these pages by itself.
Once it has read a page it will simply
begin to read the same page again. An
advantage of this type of page division
is that a faulty programme occurring on
one page cannot affect the information
stored on the next. By means of the
instructions WPAH and XPPC the pro-
grammer can reference the entire
memory, which consists of 16 pages
in all.

Address decoding and memory
structure

A characteristic feature of computer
structure is that each location in mem-
ory and each peripheral is uniquely
identified by its specific address. Thus
both peripherals and memory locations
require an element which will recognise
this address, i.e. an address decoder.

Memory chips such as RAMs and
PROMs already contain an integrated
address decoder. Thus the MM 2112 has
an 8-bit to 1 of 256 decoder, i.e. from 8
bits of address information it can
decode 256 addresses. Since the
MM 2112 has 4-bit locations, two ICs
are connected with the address inputs in
parallel, in order to be able to process
8-bit data. The result isa 256 x 8 RAM.
Memory ICs are equipped with a CE
(chip enable) or a CS (chip select) input.
When this input is “1°, the chip will not
access data, despite address information
being applied to the address inputs.
Only when the input goes ‘9’ will the
IC be enabled (since a ‘()" enables the
chip, the input is labelled CE or CS, not

CE or CS!). The CE or CS input can be
controlled via an address decoder by the
higher address bits. Figure 3 shows how
address bits 8, 9 and 10 determine
which of the 8 RAMs is addressed. The
address decoder also possesses a CE
input, thus permitting the use of more
than one decoder.

Of course, not only RAMs, but also
peripheral units such as the LEDs
described in the previous article, can be
addressed. If, however, the LEDs are
required to respond to a single address,
the help of an 8 by 1 to 256 decoder is
needed.

If the LEDs are addressed solely by
the higher address bits (via the address
decoder) then this is known as
‘incomplete address decoding’. From a
software point of view, this can save
instructions, since the ‘low’ byte does
not need to be loaded by the appropri-
ate pointers.

CPU card

The CPU card replaces the exper-
imenter’s board of the previous article;
what the card contains is shown in
figure 4.

First of all of course, there is the CPU
itself, ie. the SC/MP chip. In future the
number of memory chips and peripheral
units will be so large that the address
outputs of the SC/MP will be unable to
drive them all. For this reason the
address outputs are equipped with tri-
state buffers, The analogue switches
which were used in part 1 are here
replaced by ‘proper’ tri-state buffers.
This is because these switches have a
certain transfer resistance, considerably
limiting the fan-out. Thus they are
unsuitable in a situation where a large
amount of memory and peripheral units

Figure 3. This figure provides an example of
the use of address decoders. In this case 8
RAMs, each 256 x 8 bits, can be fully ad-
dressed by 11 address bits via a 3 to 1-of-8
decoder.

Figure 4. The circuit diagram of the CPU card.
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are linked to the address bus.

A 74125 contains four buffers.
IC9 .. .ICI1 are used to buffer address
bits @@ ... 11. Address bits 12...15
are multiplexed on the data bus during
the NADS and stored on four flip-flops
(IC14). The outputs of these flip-flops
can be put on the address bus via IC13
and IC12.

Gates N4 and N6 together with C1 and
R2 ensure that when the supply voltage
is switched on the NRST input of the
SC/MP is momentarily enabled. The
SC/MP then begins to run the pro-
gramme by jumping to address PQQ1.
IC4 and ICS5 together form a second
256 x 8 RAM. IC2 and IC3 are EPROMs
which are addressed via an address
decoder IC1. These two PROMs, each
512 x 8, together form a 1 k memory in
which the monitor software is stored.
‘Monitor’ is generally understood to
mean a programme designed to conside-
ably facilitate various chores such as
programme loading, debugging etc.. The
subject of monitor programmes will be
examined in detail in a later article.

A separate supply voltage is needed for
the PROMs, making a total of three in
all: —7, —12 and +5 V. Entering a pro-
gramme into PROMs is a subject apart
and will be dealt with at a later stage.

CPU printed circuit board and
construction

A double-sided board (see figures 5 and
6) was designed for the CPU card,
thereby reducing to a minimum the
number of wire links required. All
connections to and from the CPU card
are brought out via a connector to DIN
standard 41612, type C64. Both the
wiring arrangement and the connector
type were chosen with a view to opti-

mum pin-compatibility with other
commonly available SC/MP CPU cards
(National ISP-8C/100 (E)).

The board has sufficient space to
accomodate all the components shown
in the circuit of figure 4. However at
this stage it is not yet necessary to
mount all of these components on the
board. The RAMs and PROMs for
example can be temporarily omitted,
as can the address decoder IC1. Until
this IC becomes necessary the 74155 of
the RAM I/O card, which has become
redundant, may be used instead. As yet,
the tri-state buffers are not absolutely
necessary either; however since they
require through connections to be made
on the board they are best mounted
immediately.

It is important to use good quality IC
sockets and to ensure good solder
connections, since tracing a faulty
contact is no easy matter.

The pin configuration of the connector
is shown in figure 7, and the connec-
tions to the RAM I/O card are shown
in figure 8.

SC/MP 1l and the p.c.board
So far, the description has been based
on the original SC/MP chip ISP-8A/
500D (PMOS). As noted in part 1 of
this series, however, a more recent
version also exists: the SC/MP II (ISP-
8A/600). This NMOS version has
several advantages over its PMOS pre-
decessor, and is basically compatible.
The differences with respect to the
older SC/MP are arrowed in figure 4a:
® SC/MP II uses a +5 V supply: “+’ to
pin 40, ‘0’ to pin 20 (GND). Note
that the connections shown in
figure 4 apply to the original version

of the SC/MP, not to SC/MP II!

Figure 4a, SC/MP 11 is basically pin-compat-
ible with SC/MPI. The differences are
arrowed in this figure.

Figure 4b. A slightly more complicated
timing circuit is required for SC/MP Il, as
shown here. Note that a 2 MHz crystal is
now required!

Figure 5. The copper layout of the printed
circuit board for the CPU.

Figure 6. The component layout of the p.c.b.
for the CPU.
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Parts list to figures 4 and 6 Semiconductors: Miscellaneous :
IC1 = 74155 Xtal = 1 MHz crystal

Resistors: IC2,1C3 = MM 5204 (National)

R1,R2 = 4k7 IC4,IC5 = MM 2112 (National) or equiv. Modifications when using SC/MP |1:
IC6 = 4049 RB00A =100 k

Capacitors: IC7 = 7437 RB0O0B =1 k

C1=10p/63V IC8 = ISP-8 A/500 D (SC/MP) C600 = 56 p

C2...C5=100n IC9...IC12=74125 IC8 = ISP-8A/600 (SC/MP 11)

IC13 = 4050 Xtal = 2 MHz crystal
IC14 = 4042
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® ‘ENIN’, ‘ENOUT’ and ‘BREQ’ (pins
3, 4 and 5) are inverted in SC/MP II,
becoming ‘NENIN’, ‘NENOUT’ and
‘NBREQ' respectively. For the
SC/MP, ENIN is connected to +5V
via the connector; for SC/MP II,
NENIN is connected to supply
common via the connector (see
figure 8). (N)ENOUT is not used, so
the fact that it is inverted is un-
important. Since BREQ is inverted
in SC/MP II, inverter N3 in figure 4
becomes redundant; pin 5 of IC8 is
connected direct to the input of N2
and via R1 to +5 V (not —7 V!).

® The timing circuit for the SC/MP Il
is slightly more complicated than for
the original SC/MP. As shown in
figure 4b, a 2 MHz crystal is used for
SC/MP 1I; a 100 k resistor (R600A)
is added in parallel with the crystal;
and an RC-filter network is added:
R600B = 1 k and C600 = 56 p. Note
that these values differ from early

National Semiconductor  infor-
mation.
Further preliminary information on

SC/MP 1I is given in the National Semi-
conductor data sheet no. 426305290-
001A.

The printed circuit board is suitable for
both SC/MP and SC/MP II. Photo 1
shows the board with SC/MPII
mounted; photo 2 is a close-up of the
section where modifications are re-
quired if the older SC/MP is to be used.
For the SC/MP (ISP-8A/500D), C600
and R600A are omitted; R600B is
replaced by a wire link; the two other
wire links are mounted in the position
labelled ‘500’; a 1 MHz crystal is used;
ENIN (pin 11A of the connector) is
connected to +5V; pin 28A of the
connector is connected to —7 V.

For SC/MPII (ISP-8A/600), C600,
R600A and R600B are mounted; the
wire links are mounted in position ‘600’
(see photo 2); a 2 MHz crystal is used;
NENIN is connected to supply com-
mon; pin 28A of the connector is
connected to +5 V.,

Provision is made on an extension board
that is to be published next month for
selecting either a +5 V or a —7 V supply
for pin 28A of the connector.

Software

However great his knowledge of com-
puter circuitry or hardware, the pro-
spective microprocessor user must be
able to ‘speak’ a computer language in
order to be able to communicate with
the machine. Since the task of actually
writing a programme represents by far
the most difficult problem with which
the user will be faced, a good deal of
space will be devoted to the question of
programming skills.

Writing a programme is considerably
simplified if the problem is approached
in the following systematic fashion:

® problem definition

® hardware concept

® flow-diagram

® source programme

® machine programme

® programme test

At every stage it is important to have a
clear grasp of the problem to be solved
and all the various factors which need to
be taken into account (i.e. the problem)
must be precisely defined. Once this has
been done it is possible to calculate the
amount of hardware which will be
required; how much and what type of
memory (RAM or PROM) is needed,
what peripherals should be used (AD,
DA- converters etc.), and so on.

The flow-diagram represents a rough
draft of the programme and provides
an overview of the sequence in which
the various programme steps will be
executed. A flow-diagram is in fact
simply a block diagram of a programme.
The significance of the various block
symbols is shown in figure 9.

Having compiled a flow-diagram the
rest is basically routine work. The flow-
diagram is replaced by a source pro-
gramme written in one of the various
programming languages. The lowest
level language used for this purpose is
assembler language, in which each
machine task is represented by a
mnemonic abbreviation. When using an
assembler language the programmer
must be familiar with the machine
structure.

1

Figure 7. The pin configuration of the con-
nector.

Figure 8. This diagram shows the connections
between the CPU- and RAM-1/0O-card.

Photo 1. The complete CPU card.

Photo 2. Close-up of a section of the CPU
card, showing the components and wire
links required when mounting SC/MP II.
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This is not the case with higher level
languages such as, for example, BASIC.
Higher level languages are geared
towards the particular class of problem
to be solved rather than to the machine.
Since the use of higher level languages in
a microprocessor requires additional
software, i.e. a compiler programme,
they involve considerable outlay, and
for this reason are not discussed here.
The source programme is therefore
written in assembler language and then
translated into machine code. As was
shown in the previous article, this
‘assembly’ simply consists of filling in
the operation code for the mnemonic
abbreviations and calculating the effec-
tive addresses.

Finally, when the programme is avail-
able in machine language, it can be
loaded into memory and tested.
Experience has shown that it is ex-
tremely rare for a programme to prove
‘good’ on its first run. Indeed tracing
and eliminating faults (debugging)
usually accounts for a considerable part
of the time taken to develop a pro-
gramme. An average of something like
4 machine instructions per hour would
be considered quite good . . .

Helpful programmes

The operation of development systems
can be considerably simplified by the
use of a few special programmes.

At this stage a simple programme can
assume the function of the address
switch. At a later date, the programme
for this purpose (see table 3) will, in a
more complex form, make up part of
the monitor software. This programme
must, naturally enough, itself be loaded

into the RAM by the now conventional
method of using the address switches.
Once the programme has been loaded,
and the NRST- and then the Halt-reset-
switches have been depressed, the
following takes place:

The PC makes two jumps to the address
(QQEB.

The higher byte of pointer 1 is loaded
with the address of the data switch
(P2xx).

PTR2 (H) is loaded with the address of
the LEDs.

PTR3 assumes the function of the
address switch and thus addresses the
RAM. For this reason both the higher
and lower bytes of this pointer must be
set.

The programme which is written into
the RAM by the load subroutine is the
‘user’s programme’. This user’s pro-
gramme normally commences at address
Q009 with the NOP instruction. The
lower byte of PTR3 is therefore loaded
with 0Q.

The following instructions from the
load subroutine both store the ‘state’ of
the data switch (@8) in the address
indicated by PTR3 (@@@@) and also
display it on the LEDs.

PTR3 is then automatically incremented
and therefore indicates the next address

(9001).

Table 3. The listing of the simple load pro-
gramme.

Table 4. This table shows the order in which
the entered data and the ensuing result are
written into RAM.

Figure 9. The conventional symbols used in
flow-diagrams and their meanings.

Figure 10. Flow-diagram for the calculate-
address programme.

sc/mp |
Table 3.
START = 0000
0000 08 NOP
0001 907F JMP 7F i jump
L ]
[ ]
.
0082 2067 JMP LOADER ; jump again to LOADER
LOADER:
0QEB ca02 LDI H (SB) ; load PTR 1 with address of DS
QQED 35 XPAH 1
QOEE Cc4a0 LDI H (LED) ; load PTR 2 with address of LEDs
0aFQ 36 XPAH 2
QOF1 C400 LDI L (ADR) ; load PTR 3 with initial address
@0F3 33 XPAL 3 ; of programme to be loaded
00F4 C400 LDI H (ADR)
00F6 37 XPAH 3
LOOP:
Q0F7 Cc100 LD® (1) ; load (DS)
00F9 CAQQ ST® (2) ; and store in LEDs
90FB CF@1 ST@1 (3) ; store in address
Q@FD 00 HALT ; increment PTR 3
OQFE 9QF7 JMP LOOP ; back to LOOP
* END
Table 4. 9 symbol for
Q@3F  Minuend, Lower Byte limi bol. (S
Minuend, Higher Byte imit symbol. (Start, stop, etc.)
Subtrahend, Lower Byte
Subtrahend, Higher Byte
Difference Lower Byte
Difference Higher Byte branch instruction

O

connector

input, output

subroutine

L
5/
a2

manual function
(operating switches etc.)

programme modifications
(setting pointers etc.)

function, operation (general)

9851 9
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The CPU is now stopped.

By means of the data switch the data
for the next memory location of the
user’s programme can be set.

Pressing the halt-reset switch once more
results in this data automatically being
read into the RAM.

Only when the entire user’s programme
has been loaded in this way should the
NRST switch be again pressed.

Then (after a halt-reset) the user’s pro-
gramme will be executed by the CPU.
At this stage the use of a load pro-
gramme is only worthwhile if the user’s
programme is substantially longer than
the loader, since the latter must first be
written into the RAM. It is a natural
step to store such programmes in a
PROM since then they need not be
continually reread. More about this
later.

Calculate-address-programme

Translating a programme from as-
sembler- to machine language involves,
among other things, calculating effective
addresses (EA). Naturally enough it
would be nice if this task could be
performed by the SC/MP itself, and, not

surprisingly, this it can do.

Calculating effective addresses is for the
most part simply a question of deter-
mining the difference between two 4-
digit hexadecimal numbers. The SC/MP,
like many other microprocessors, can-
not calculate the difference between
two numbers directly, but requires the
assistance of an ‘add’ instruction. The
instructions recognised by the SC/MP
for this purpose are: CAD (complement
and add), CAI (complement and add
immediate) and CAE (complement and
add extension).

These instructions will result only in the
complement (all bits are inverted) of the
addressed data being added to the con-
tents of the AC, which of course does
not give the difference of the two
numbers. In order to obtain a difference
the two’s complement of the appro-
priate number is needed.

As is well known, the two’s complement
can be obtained by adding a ‘1’ to the
one'’s complement. It was stated earlier
in the article that during all arithmetical
manipulation of data the ‘contents’ of
the CY/L bit are also added to the AC.
This fact can be utilised by preceding a

10

set counter
to b4

auto-indexed
PTR 3 data from
DS to RAM and LEDs

load PTR 3
with address of
RAM (0Q3F)

set counter
o 92

SCL

>

calculate
1 byte
difference

complement instruction with an SCL
instruction (set carry link), so that the
contents of the CY/L appear as a
number @@@1, which will be added to
the contents of the AC. In this way it is
possible to obtain the two’s comp-
lement of a number and therefore the
difference between it and a second

number.

For example: X'55 — X'03=X'52
P1Q10101

11111100 (one’s complement of (3)
P0PQOPP1 (contents of CY/L) -
Q1010010

The 1-carry from the most significant

bit is once more stored in CY/L, since it

may be required in multi-bit calculations

such as the following:

X'5555 — X' 0003 = X'5552

The lower bytes are handled in the same

way as the previous example. The higher

bytes are manipulated as follows:

p1Q1Q1Q1

11111111 (one’s complement of PQ)

PPPOPPP1 (carry from lower byte in
CY/L)

1919101

In the case of both 8- and 16-bit num-
bers the two’s complement is obtained
by adding one to the one’s complement.
For this reason, even with 2-byte
numbers only the first complement
instruction is preceded by an SCL
instruction. If CY/L remains set for the
higher byte operation this means there
has been a carry from the lower byte.
So much for how the SC/MP actually
performs the arithmetical operations;
however, it is of course necessary to
enter the addresses from which the
difference is to be calculated. Table 4
shows the sequence in which the first
four bytes are read from the data
switch, and in which order the entered
data and the resulting difference are
read into a section of the RAM. This
table introduces two commonly used
terms in micro-programming, namely
minuend and subtrahend. Minuend is
the number from which the subtraction
is made, and subtrahend is the number
which is being subtracted. Figure 10
shows the flow-diagram for the calcu-
late-programme, and the same pro-
gramme is listed in machine- and
assembler-language in table 5.

After the start instruction PTR1 and
PTR2 are loaded with the address of
DS and LEDs respectively. PTR3 is
used to address the RAM. The function
of a ‘software counter’ may as yet be a
little unfamiliar. This type of counter is
used to cause a specific subroutine to be
repeated a predetermined number of
times. In this case the load programme
is executed a total of 4 times, since 4
bytes are to be entered into the RAM.
In actual fact a software counter is
nothing more than a location in the
RAM reserved for this purpose, which is
loaded with (4. .
Each time the load programme has been
executed the counter is decremented
by one, and when the counter reaches
Q0 the main programme is continued.

+
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load PTR 1 with address of DS

load PTR 2 with address of LEDs

load PTR 3 with address of RAM

; load counter with 04

; label for load programme

Table 5.
START = 0000
0000 @8 NOP
0001 Cca02 LDI 02 :
0003 35 XPAH 1
0004 c4a01 LDI 01 :
0006 36 XPAH 2
NEXT:
0007 C43F LDI L (RAM)
0009 33 XPAL 3 :
000A C400 LDI H (RAM)
ooecC 37 XPAH 3
000D C404 LDI 04
0O0F C82E ST COUNTER
LDDS:
0011 C100 LD @ (1) :
20013 CAQQ ST 0 (2) :
2215 CF@1 ST@1 (3) ;
o017 00 HALT
0018 B825 DLD COUNTER ’
001A 9CF5 JNZ LD DS
SUBTR:
®01C C7FC LD@—4 (3) ‘
00E Cc402 LDI @2
0020 c81D ST COUNTER ;
0022 03 SCL :
NEXTBY:
0023 C701 LD@1 (3) H
0025 FBQ1 CAD 1 (3) :
0027 CB@3 ST 3 (3)
0029 B814 DLD COUNTER
0028 9CF6 JNZ NEXTBY :
002D C402 LDI 02
002F CB80E ST COUNTER
0031 C702 LD 2 (3) :
NEXTDI:
0033 Cc701 LD@1 (3)
0035 CA 00 ST 0 (2) H
0037 o0 HALT
0038 B8@5 DLD COUNTER
003A 9CF7 JNZ NEXTDI
003C 90C9 JMP NEXT .
COUNTER
* Byte i
RAM ;
* END

load DS
and store in LEDs
and store in RAM

decrement counter

; if counter # 00 fetch following byte from DS

reload PTR 3 with address of RAM

load counter with 02
set carry/link fot two's complement

load minuend

complement subtrahend and add
write difference in RAM

if counter = 00 continue

; load counter with 02
load address of diff. byte 1 into PTR 3

label for next diff. byte

; load difference byte
and store in LEDs

; if counter = 0@ go to

next entry

reserve a byte for software counter
section of RAM for entry

PTR3 is once more loaded with the
RAM address (p@3F), and the counter is
now loaded with 2. The following
section of the programme is the
calculate-difference routine and this has
to be executed twice, once for the lower
byte and once for the higher byte. When
that is completed the counter is once
more loaded with (2, since the calcu-
lated differences must be displayed in
turn by the LEDs; first the lower byte
and then the higher byte. The ‘display
routine’ must therefore be executed
twice. When the counter reaches 00,
fresh data can once more be written
into the RAM.

Actually running the entire calculate-
address-programme is a simple matter.
Once the programme as shown in
table 5 has been loaded into the RAM
the NRST is operated. The first byte is
then entered on the data switch. A
single operation of the halt-reset switch

Table 5. The listing of the
programme.

calculate-address

results in the byte being written into
the RAM. The first byte is always the
lower byte of the minuend (see table 4).
Once the four bytes have been loaded,
operating the halt-reset switch a fifth
time will cause the lower byte of the
difference to be displayed by the LEDs,
Pressing the halt-reset a final time
results in the higher byte of the differ-
ence being displayed.

This programme also suffers from the
disadavantage that it must of course
first be written into the RAM. This is a
time-consuming exercise which is only
worthwhile if a large number of
addresses have to be calculated. In the
course of time this programme will
naturally be written into a PROM, but
everything which is eventually stored in
ROM or PROM must first be tested in
RAM.

(to be continued)



