1-24 — elektor january 1978

experimenting with the SC/MP (3)

with

Interrupt operations

An interrupt operation occurs when an
externally generated control signal
causes the SC/MP temporarily to
suspend main programme execution.
The interrupt request will typically be
issued by a peripheral device such as,
e.g., a display which requires refreshing,
When the CPU acknowledges such an
interrupt, it jumps from the main pro-
gramme to a special routine to service
the interrupting device — after saving
the return-to-main programme address.
Once the interrupting device has been
serviced, the CPU automatically resumes
main programme execution. This pro-
cess is illustrated in figure 1. Note that,
in principle, an interrupt routine is quite
similar to a subroutine call, except that
the jump is initiated externally by an
interrupt request rather than internally
by an instruction in the current
programme,

The situation becomes more compli-
cated when the CPU receives several
interrupt requests more or less simul-
taneously and has to choose between
more than one interrupt routine. When
this happens the CPU basically has two
ways of servicing the interrupts: the
first is to run the routines sequentially,
the second is to ‘nest’ the interrupt
routines in order of priority.

In the former case the CPU first
determines the source of the interrupt
request then jumps to the appropriate
routine. Whilst the CPU is executing this
routine the interrupt input is inhibited,
so that it will not respond to any
further interrupts. Once the service
routine has been completed the CPU
resumes main programme execution,
However, if the CPU is then presented
with a second interrupt request, it will
once more automatically branch to the
required subroutine. The problem of
several interrupt requests occuring
whilst the CPU is already executing an
interrupt routine is solved be means of a
priority encoder which assigns a differ-
ent priority to each interrupt source.
The CPU must therefore be able to
interrogate the encoder so as to deter-
mine the relative priority of the various
interrupting devices. Figure 2a shows
the sequence of subroutines; in this
example routine ‘@’ has the highest

This, the third article in the
SC/MP series, introduces the
memory extension card, which,
in addition to containing % k of
RAM and % k of PROM, also
houses the multiplexer and
priority encoder. The latter
hardware allows the SC/MP to
handle interrupt requests from
more than one peripheral device.
The article also examines the
software involved in interrupt
operations.

H. Huschitt

experimenting
the SC/MP_, |

N)

priority.

In the case of nested interrupts, the
interrupt system is re-armed immedi-
ately upon the CPU branching to an
interrupt routine, so that a second
interrupt request can be acknowledged
by the CPU at any time. Assuming, for
example, that the CPU is already
executing an interrupt routine when it
detects a second interrupt request from
a higher priority source, it will first
branch to the routine which will service
that device, then return to complete
the initial interrupt routine, and only
then return to the main programme (see
figure 2b). During a routine the CPU
will not acknowledge an interrupt
request from a lower priority source.
Jumping from one programme to
another does not, in itself, present any
special problems; one must simply
ensure that the contents of the various
CPU registers are not lost when
branching to a subroutine, otherwise
the original programme could not be
executed properly. To preserve the
status of the CPU’s internal register
values, they are stored in a stack. This
stack consists of several general-
purpose registers which store data on
the principle of last-in/first out (‘lifo").
Some microprocessors possess an inte-
grated stack register, whilst others have
instructions* which permit a stack 1o
be programmed into the RAM.

SC/MP interrupt system

The SC/MP has only one interrupt
input (Sense A). When the internal
interrupt enable (IE) flag is set, by
executing either an Enable Interrupt
Instruction (IEN) or a Copy Accumu-

*In several microprocessors one machine
Instruction results in the CPU carrying out a
large number of separate steps. Think, for
example, of how many operations are in-
volved in a DLY instruction in the case of
the SC/MP. The name for the total number
of steps involved in a single machine instruc-
tion is a ‘micro-programme’ Computers and
some mICroprocessors are ‘micro-pro-
grammable’, i.e. the micro-programme, and
s0 the instruction set, can be altered to suit
a special application. Naturally this technique
requires a profound knowledge of the
architecture of the CPU in question.

experimenting with the SC/MP (3)

elektor january 1978 — 1-25

0000
main start
r programme.
interrupt]
interrupt
routine
end
9857 -1
'r

interrupt @ = highest priority

interrupt routines

.

main programme

interrupt 1 ——e -

interrupt 2
interrupt 3 —=-
interrupt f —

Figure 1. Diagrammatic representation of an
interrupt operation,

Figure 2. These examples illustrate the two
basic methods of servicing multiple source
interrupts.

Figure 3. Complete circuit diagram of all
the hardware housed on the second Eurocard.

2b

interrupt @ = highest priority

interrupt routine @ -——————-

interrupt routine 1

interrupt routine 2

interrupt routine 3

main programme

interrupt 3 —=—
interrupt @

interrupt 1 =——e—————— |
LR R e e (et

r i
o~ ™
- o
a a
3 3
c =
O a
2 &
-~ i

3 1

ADDRESS [2§C
BITS !
00 15

1194

0z 0 ep

IC6
AAM

MM2112

4049

1G4 - 7400

i £ e *
L dHi « HHEE B ol
| R FERTE
! e M;’;mz . - q v:';:ﬁu ‘ p-w‘w ;
|| #coe. aoes NN :.') _"_")(_.T 1 0400 p5FF =t MME2040
| i~ | i L”T_l | T L e
I el [RRETEY N
Ill | il‘m'nw?i
‘} T e e ADDRESS #.;_:
R o B
\ ol |
| | e fry i]
F D]

DATA BUS

=],

[XF] 1

1-26 — elektor january 1978

experimenting with the SC/MP (3)

Figure 4. This diagram shows detailed
- § address el = breakdown of the current page-address
Fﬁ__ﬂ structure of the SC/MP system’s memory. At
—Q@OFF 1/4k RAM
0009 -~ a later stage the RAM 1/O card will become
P1xx | LED's =
: redundant, and the CPU card will move up
p2xx | DS (data switch) .
$3xx to occupy the first page of memory.
1
] ;
! :ai:':.‘zd:d sections, Table 1. This table shows the various steps
G;FF E,SM involved in entering and exiting an interrupt
3800 CARD routine in the case of the SC/MP.
I
|
| Table 2. Example of a programme designed
{ to process a number of interrupt requests.
I
I
0 |l= " Table 3. A programme which enables the
1000 rr—— contents of the CPU registers to be checked
o 1k PROM (monitor) by having them displayed on LEDs.
1
15:2‘: 1/2 k PROM-option
1600 | 16x® —16x 7 = Mux.
! 16x8 - 16x F = PR. ENC CPU
17FF | 17xx = Hex — 110 CARD
1800 | 2 decoded sections,
1BFF | each % k
1CO0
1OFF 1/2k RAM Table 1
1E00 . !
#re | 172« RAM | INT: ; label of interrupt routine
2000 oy ¥
| . g ;
1 interrupt routine proper
| °
| 41— .
i L :
i 8 /_,_:.:_-_-*_’:. = cl::e:tuons IEN : enable interrupts
! e = XPPC3 ; return to main programme
1 —1 JMP INT ; jump to start address of in-
|: y terrupt routine
FFFF b= A
x = don’t care 9857 4
1k byte's = 1024 byte's
lator to Status Register Instruction | routine. Thus in order that this routine of memory reserved for this purpose,
(CAS). the Sense A line is enabled | can, if necessary, be repeated, the | and after the routine, loads them back
to serve as an interrupt request input. | subsequent address must contain an into the original registers. A part of this

Upon detection of an interrupt request
(SA is high) the SC/MP first completes
the current instruction which is being
executed before acknowledging this
request.

There then follows an internal DINT
Instruction which resets the status
register flag (IE), thus preventing the
SC/MP from responding to any further
interrupt requests. At the same time the
contents of the programme counter are
exchanged with the contents of pointer
register 3. The next instruction which
the SC/MP executes is that which is
found under the address (PC)+ 1. This
means that before the interrupt se-
quence begins, pointer register 3 must
be loaded with the start address of the
interrupt routine minus 1.

The return from interrupt to the main
programme is effected by two instruc-
tions: first Enable Interrupt (IEN),
followed by Exchange Pointer 3 with
Programme Counter (XPPC 3). The
latter instruction copies the original
contents of the programme counter,
which for the duration of the interrupt
routine were stored in PTR 3, back into
the PC, allowing main programme
execution to recommence.

Since during the interrupt routine the
programme counter is being continually
incremented, this means that PTR3 will
no longer contain the start address of
this routine, but rather the address
immediately following the end of the

instruction to jump back to the start
address of the routine (see table 1).

Multiple interrupt capability

The number of interrupt inputs of the
SC/MP can be extended fairly simply
to 8. All that is required is some extra
hardware in the form of a 74148 (IC8
in figure 3) that is used as a priority
encoder, The output (pin 15) of the
priority encoder goes high whenever
a ‘0" appears at one of its eight inputs.
This ‘1" is used to take the interrupt
input (Sense A) of the SC/MP high,
causing the CPU to acknowledge the
interrupt request. The BCD outputs of
the encoder indicate which of the inputs
is low. This information is routed out
onto the data bus via three buffers(1C9).
The @ input of the encoder has the
highest priority, i.e. when this input is
taken low, interrupt requests appearing
at any of the other inputs are ignored
by the SC/MP,

To be able to service several interrupting
devices requires not only the hardware
of a priority encoder, but also ad-
ditional software. This is particularly
true in the case of the SC/MP, which
does not have any stack registers. Thus,
in the event of an interrupt routine the
contents of the SC/MP’s internal
registers must be temporarily stored in
an external ‘software stack’. This is
basically a programme which loads the
contents of these registers into a section

programme will be discussed later in
this article.

Before the interrupt programme can
begin the CPU must first interrogate the
state of the prionity encoder. An
example of suitable interrupt software
is shown in table 2. The actual inter-
rupt routines and the way in which the
interrupt requests are handled will of
course depend upon the type of periph-
eral devices which require servicing.
For this reason it is impossible to
provide universally applicable interrupt
routines,’ these must be developed by
the individual user in accordance with
the requirements of his particular pro-
gramme.

Multiplexer

In addition to the 8 interrupt inputs,
main programme execution can also be
influenced by a number of other inputs,
namely. the 8 inputs of the multiplexel
IC7 (see figure 3). The logic state of
each of these can be tested by applying
the ‘address’ of the input concerned
{BCD-coded) to the select inputs of the
‘Mux’ (pins 9...11). The inverted
version of the selected input signal then
appears at the output (pin 6) of the
multiplexer. This output data bit is then
pulsed onto bit @7 of the data bus via
a tri-state buffer. Bit 07 was chosen
since the status of this bit can easily
be tested by means of the Jump If
Positive (JP) instruction. The SC/MP

elektor january 1978 — 1-27

experimenting with the SC/MP (3)

Table 2

MAIN PROG:
DINT
.

L]

L]

[]
LDI L (STACK)
XPAL2
LDI H (STACK)
XPAH2
LDI L (INTIN)—1
XPAL3
LDIH (INTIN)
XPAH3
IEN
L]
L]
L]
INTIN:

LD PRIOR
ANI 07
XAE
LDE
XRI 00
JZINTO
LDE
XRI @1
JZ INT 1
LDE

.

JMP INTOUT
INT 1:
IEN

® e o 0 00

INTOUT
.
.
.
.
.
IEN
XPPC3
JMP INTIN

; disable interrupts
section of main programme with
SC/MP inhibited from detecting
interrupts
load PTR 2 (stack pointer) with
address of RAM stack
load PTR 3 with address of multiple

interrupt routine

enable interrupts

section of main programme where
interrupt is possible
Label for multiple interrupt routine

e —

; store status in stack (see table 3:
SAVSTA routine)

; Interrogate priority encoder
; mask out number of routine
; and store in E

; was the number Q7
, ifyes, jumpto INTQ

; was the number 1?
. if yes, jumpto INT 1

. label for routine 'Q’
; only for nested interrupts

routine '@’

; Jjump to INTOUT routine
; label for routine "1’
only for nested interrupts

—.

routine ‘1’

load status back into CPU

only for sequential interrupts

. only for sequential interrupts

Table 3

0000
0001

0003
0004

0006
0007

0055
0057
0058
005A
0058
05D
QOSE
0060
0061

0063
0064
0066
0067

0069
Q068
@06C
A06E
0071
0072
0074
0075
Q077

0078
@07A

0e7C
BQ7E

007F
0081

0083
0085
0086
ness
208A
008C
008D
0eBE
008F
2090
2091
0092

2093

START = 0000
08 NOP
Ca54 LDI L
(SAVSTA)—1
] XPAL3
C400 LDIH
(SAVSTA)
37 XPAH3
3F XPPC3
SAVSTA:
c837 ST AC
o1 XAE
C835 STE
06 CSA
€833 ST SR
31 XPAL1
C831 ST P1L
35 XPAH1
C82F STP1H
32 XPAL2
Cc82D ST P2L
36 XPAH2
c828B ST P2H
MUX:
C400 LDI L (MUX)
31 XPAL1
C416 LDI H (MUX)
35 XPAH1
cam LDI H (LED)
36 XPAH2
C48D LDI L (AC)
33 XPAL3
Ca00 LDI L (AC)
37 XPAH3
LOOP:
cae7 LDI @7
Cc811 ST COUNT
NEXT:
BBOF DLD COUNT
21 XAE
c180 LD X'80 (1)
94F9 JP NEXT
Coos LD COUNT
01 XAE
C380 LD X'80 (3)
CAQQ ST0(2)
9QEC JMP LOOP
0o COUNT:
e BYTE
00 AC:
e BYTE
00 E4
e BYTE
00 SR:
e BYTE
00 Pl
®BYTE
00 P1H:
e BYTE
00 B21E:
e BYTE
[0} P2H:

load PTR 3 with the
address of SAVSTA

the programme under test
is loaded from G007 on

; load XPPC3 into the

address immediately
following the "suspect’
section of programme

; Label of SAVe STatus

routine
store (AC) in RAM

; copy (E]l to RAM
; (SR), etc.

Label for multiplex routine

load PTR 1 with the address
of Mux

; load PTR 2 with the address

of the LEDs

load PTR 3 with stack
address

prepare counter 1o in-

; terrogate the Mux

; decrement counter and

load E for indirect
addressing
load Mux input @ ...7
if addressed input active,
continue
load counter state into E
and display desired
(register) contents on LEDs

RAM:-byte for (AC) stack

; ditto for (E)

etc.

1-28 — elektor january 1978

experimenting with the SC/MP (3)

T addadt da04

§RNIRRNSN

Parts list to figures 3 and 5

Resistors:

R1,R2 = 2k2

R3 =470 22*°

R4 =220 Q"
R5...R20 = 4k7

Capacitors:
C1=22u/16V
C2=1u/16V*
C3...C6=150n

Semiconductors
IC1 = 4049
IC2 = 4011
IC3 = 7405
1C4 = 7400

- -

- -
0 -

-

\

L

IG

-

0
b1
iy
N

1C5,1C6,IC10 . .. IC13 2112

IC7 = 74151
IC8 = 74148
1CO = 74125
IC14 = MM 5204Q
1C15 = 79G*

* omitted for SC/MP ||

-

experimenting with the SC/MP (3)

elektor january 1978 — 1-29

will jump if this bit is ‘9’ (i.e. a positive
number), and continue main programme
execution if it is ‘1°. An example of
the software involved when utilising
the multiplexer is shown in the pro-
gramme listed in table 3.

Page-address structure

As the volume of system hardware
continues to grow with the addition of
the memory card (shown in figure 3), so
the need to clarify the address structure
of the system becomes more urgent,

The CPU card already contains a large
portion of the memory capacity of the
system (e.g. the PROMs for the monitor
software), which, naturally enough,
must be capable of being addressed.
The CPU card is therefore supplied with
an address decoder. With the advent of
the additional memory capacity rep-
resented by the circuit in figure 3 the
page-address structure of the system’s

memory takes the form shown in
figure 4.
Half of the first memory page

(000P — OFFF) can be addressed by the
address decoder of the RAM 1/O card.
However, since the'address decoding on
the RAM 1/0O card is incomplete (AD 11
is nol decoded) the second half of this
page is identical to the first half and
cannot therefore be used for additional
hardware.

The second . memory page contains
everything which can be addressed by
the address decoder of the CPU card.
This consists firstly of the two PROMs
for the monitor software. To provide
the option of expanding the monitor
software, space 1s provided for a third
{'2k) PROM (IC14 in figure 3). The
section from 1600 to 17FF is reserved

- for the multiplexer with priority en-

!
\

coder and for the hexadecimal input/

output (HEX I/O) hardware which will
be appearing shortly. The remaining
lines of the second page are taken up by
a 1k RAM, % k of which is present
on the CPU card, with % k situated on
the memory card as shown in figure 3.
Once the hexadecimal input/output has
been incorporated into the SC/MP
system, the RAM 1/O card will become
largely redundant. Once the user has
acquired a certain degree of proficiency
with the system he can be expected to
dispense with the RAM [/O card
completely. For this reason it is also
possible to construct the system
without the RAM 1/O card. This is done
by switching the wire links a and b
(shown as dotted lines in figure 3) to
their alternative positions, so that the
first memory page is now addressed by
the address decoder of the CPU. Every-
thing which in figure 4 lies between
1009 and 1FFF is then situated be-
tween Q0P and PFFF.

Board interconnections

The complete circuit diagram of the
memory-extension card is shown in
figure 3. The track pattern and com-
ponent layout of the printed circuit
board for this card are shown in figure 5.
This board, like the CPU card, is double-
sided with plated-through holes, and
conforms to Eurocard dimensions. It
should also be fitted with a 64-way
edge connector., The board houses a
regulator IC (IC15) which supplies the
negative voltage for the earlier, PMOS
version of the SC/MP (see Elektor 32,
p. 12-08: SC/MP Il and the p.c. board).
If SC/MP 11 is used, IC15, R3, R4 and
C2 can be omitted; the wire link adjac-
ent to the position for this IC is then
connected to the point marked ‘S V',

In order to interconnect the various

Figure 5. The track pattern and component
layout of the printed circuit board for the
memory card (EPS 9863), Particular attention
should be payed to the wire link to the right
of IC15: when using the earlier P-MOS
SC/MP, this link should be in the ‘=7 V'
position; for SC/MP Il it should be in the
‘5 V' position.

Figure 6. To interconnect the Eurocards,
a connector bus can be formed by joining
the corresponding pins of the socket con-
nectors using wire links.

Eurocards, a ‘connector bus’ is necess-
ary. This basically is nothing more than
a number of socket connectors with
the corresponding pins (all pins la, all
pins 1b, etc.) interconnected. This
arrangement is illustrated in figure 6.
Whilst it is entirely possible to make all
the necessary connections in this
fashion (using e.g. *wire-wrapped’ links),
such a method is both time-consuming
and error-prone. For this reason a ‘bus
board’, which can accomodate three
socket connectors, was designed (see
figures 7 and 8). The CPU card and the
memory card can then be intercon-
nected by simply plugging them into
the bus board. This bus board must of
course be able to communicate with the
RAM 1/O card. Since the RAM I/0O card
does not use edge connectors, these
connections must be hardwired. The
wiring details are provided by figure 9.
Termination points to the bus lines are
provided at each end of the board so
that several bus boards can be stacked
end to end and linked to extend the
system. The layout of these termination
points allows the addition of extra 64-
way sockets so that external con-
nections need not be hard wired.

The only major limitation to large scale
expansion of the system is that imposed
by the power supply. Anyone who plans
a large system should bear in mind that
each page of memory (4 k) consumes
a current of approximately 1 A. A
suitable 5 V/3 A, —12 V/0.5 A supply
will be published in the near future.

Software

It will not have escaped most readers
that the role played by software in this
series of articles is gradually growing in
importance. The reason for this is
twofold: firstly the ‘intelligence’ of a

-

1-30 — elektor january 1978

experimenting with the SC/MP (3)

7

® mr—amm O .“

2E

00000000000000000000000000000000¢
SOGMWOOOOOOOWW
n

Figures 7 and 8. A more convenient method
of linking the Eurocards is to use this ‘bus
board’ (EPS 9857) which can accomodate
up to three 64 pin edge connectors. Several
bus boards may also be stacked together to
expand the memory capacity of the system
even further.

Figure 9. This diagram shows the wiring
connections between the RAM 1/0 card and
the bus board.

Figure 10. By means of a multiposition
switch it is possible to display the contents
of each CPU register in turn on the LEDs.

computer system is largely determined
by the number and tvpe of programme
at its disposal. secondly, it is through
developing his own software that the
user can best appreciate the true poten-
tial of his system.

To this end, the present article con-
cludes with a short ‘debug’ programme
which will display the contents of the
CPU registers at any stage during the
programme under test. This is done by
replacing the instruction which immedi-
ately follows the ‘suspect’ section of
the programme by XPPC 3 (3F). The
programme under test 1s then started as
normal, afteran NRST instruction. When
the programme reaches the XPPC 3 it
jumps to a ‘save status routine’ and
writes the contents of the CPU registers
into the RAM. The Mux inputs are con-
nected to a multiposition switch (see
figure 10)., by means 1 which the
register whose contents are to be
dlhplﬂ_VL‘d on the LEDs can be selected
In this way the contenis of each CPL
register, with the exception of course
of PTR 3 and the PC, can be examined
in turn.

The programme in its present form can
only be exited from by means of an
NRST instruction A more sophisticated
and convenient version of the pro-
gramme will later be incorporated into
the monitor software.

experimenting with the SC/MP (3)

missing link elektor january 1978 — 1-31

12V 5V
C?
_12V 3A.3C +5V
* 4A 4C e *
5V A
ENIN |12
NHOLD ¢
ADW 35 AD
22C
234
23C
24A
BUS oic D RAM
BOARD et -1/0 -
264
ADPQ 255 ADD®
DBY7 e — DB @7
:LY
ac
BA
CE Q
DB P < DB 99
NRsT(] |- § vasT
cont(] f= i cont
NADS [|22 D) Naps
nwos) |22 [) nwos
CE RAM |/o’ L [) cE
8857 9
The listing for this programme is given
10 o in table 3. The ‘save status routine’ can
Mux 0 2F- also be used for interrupt operations.
Mux 1 E In this case the section of RAM from
SA . 008D . .. 0093 is used to form a soft-
buix 2 2 ~o ware stack,
Mux SQ—PE-RIL—O ! The majority of the instructions con-
M % PTR1H I tained in this programme have already
o PTR2L been discussed and require no further
Mux & 985710 explanation. One important exception
Mux 6 % PTR2H however is the ‘indirect’ address mode
utilising the extension register. As

explained in part | (‘address modes’),
indirect addressing describes the address
mode whereby the effective address
(EA) is obtained by incrementing the
contents of a pointer by the contents of
a byte taken from the RAM. In the
case of the SC/MP this can only be done
with the aid of the extension register.
When the displacement value is X' 80,
then (for memory reference instruc-
tions) it is no longer used to obtain
the effective address, but is replaced
by the contents of the extension regis-
ter. The contents of the extension
register are not known at the time of
entering the programme, but are
determined during execution of the
programme. In this programme the
indirect address mode results in a
considerable saving in the number of
instructions. M

(to be continued)

Modifications to

Additions to

Improvements on
Corrections in

Circuits published in Elektor

Formant — the Elektor music synthesiser
Parts 4 and 5, October and November
1977. In Part 4, Rl in the input adder
circuit (figure 7) is shown as 100 k.
This gives the ‘Octaves, coarse’ control
(P1) a range of £ 7% octaves. At a later
data, it was decided to reduce this range
to £ 5 octaves. In part 5, this modifi-
cation was carried out: in figure 2a, R1
is shown as 150 k; the front panel lay-
oul (figure 3) shows a ‘coarse’ range
from —5 to +5.

However, we forgot to point out that
the value of R1 shown in figure 7 of
part 4 is ‘incorrect’. Furthermore, and
more seriously, the Octaves/Volt adjust-
ment was based on the original value of
R1. This means that the Octaves/Volt
adjustment procedure described in part 5
is incorrect.

For the adjustment procedure using a
DVM and a frequency counter, the
connection between the slider of P] and
R1 must first be unsoldered. The free
end of R is then connected to ground,
and the slider of P1 is connected to the
KOV input with S1 in position ‘a’.
Adjustment can now proceed as de-
scribed in the original article.

The second adjustment procedure, using
the beat note method, is correct as
originally described. »

