2-32 — elektor february 1979

using elbug

u []

It is almost a year since the article
on Elbug, the monitor software
program for the Elektor SC/MP
uP system was published. The
original article concentrated on a
description of the various control
functions which Elbug provided,
and did not examine how the
program actually worked.
Prompted partly by the many
requests from readers, the
following article takes a more
detailed look at Elbug, describing
how some of the more important
subroutines function, and how
these routines can profitably be
incorporated into one’s own
programs.

(H. Huschitt)

Figure 1. This figure illustrates the functions
assigned to the various locations in Elbug's
software stack.

Programming techniques

Writing programs for microcomputers is
not difficult, providing one adopts the
approach of breaking the program down
into a number of smaller units which
can be tackled individually. Just as a
complex electronic circuit is built up
from a number of separate components,
so any large program is composed of a
number of smaller routines and subrou-
tines. This is also true of Elbug, which
contains e.g. a display routine, which
ensures that the hexadecimal represen-
tation of a data byte appears on the
displays, a keyboard routine, which
ensures that the correct code is generated
when a particular key is depressed, and
so on. Subroutines are implemented by
jumping from the main program to the
start address of the routine in question.
At the end of the routine the micro-
processor resumes main program ex-
ecution by jumping back to the address
of the main program instruction which
follows the subroutine call,

In higher programming languages, such
as, e.g. BASIC, there are special instruc-
tions, GOSUB (go to subroutine) and
RETURN (return from subroutine), for
these tasks. Certain microprocessors are
also provided with similar instructions,
however this is not the case with the
SC/MP. The instruction which the
SC/MP employs to initiate a subroutine
is XPPC (Exchange Pointer with
Program Counter). By loading the
address of the subroutine in whichever
pointer is specified, the above instruc-
tion will effect a jump to that routine,
since the address in question is loaded
into the program counter.

The SC/MP has of course three 16-bit
pointer registers in addition to the

program counter. Each of these pointers
may be used as page pointers, stack
pointers or subroutine pointers, how-
ever PTR 3 is unique in that, when the
SC/MP senses an interrupt request (the
enable interrupt line — Sense bit A in the
Status Register — goes high) the SC/MP
automatically executes an XPPC-3 in-
struction. Thus, after a valid interrupt,
the next instruction executed will be
that contained in the address held in
PTR 3 (incremented by one). At the
end of the interrupt routine the jump
back to the main program is similarly
effected by means of an XPPC-3 in-
struction. As a result of this interrupt
facility, PTR 3 is conventionally as-
signed as the subroutine pointer. How-
ever, it is of course perfectly feasible to
use the other two pointer registers to
call subroutines from within the main
program.

To implement a subroutine call, the
subroutine pointer is actually loaded
with the start address of the routine
minus one. The reason for this is that
the SC/MP increments the contents of
the program counter before it fetches
the next instruction. Thus:

LDI L(SUBR)-1

XPAL n

LDI H(SUBR)

XPAH n

Since the address contained in the
subroutine pointer must be incremented
in order to obtain the true start address
of the subroutine, it is important that
this operation does not require a carry
from bit 11 to bit 12 of the address
since the SC/MP will not perform such a
carry. Thus, for example, if the start
address of the subroutine is FQQQ,
normally the address loaded into the

Table 1.

DELAY:
LDI 08 ; load counter with 8
ST COUNT

LOOP:
DLY X'FF
DLD COUNT
JNZ LOOP ; execute delay instruction 8 times
XPPC 3 ; jump back to main program
JMP DELAY ; jJump to start

COUNT:

«BYTE . RAM byte as counter

|

using elbug elektor february 1979 — 2-33
the start of the routine.

1 A practical example of the above-
ADR STACK LDKB GETHEX PUTHEX described techniques is the delay
OFFF STAKPT, lower routine listed in table 1. This routl.r_;e
OFFE STAKPT, higher can be used in the course of mam
OFFD ROUTAD, lower program execution in order to avoid
OFFC ROUTAD. higher filling a .large po::tlon of program
OFFB STFULL memory Wllth c!elay mstrucu_o_ns. If the
OFFA STDEEP delay routine is u§ed repetitively, the
OFF9 STKEFF :u]tiroutme call will be structured as

ollows:
OFF8 AC ;
OFF7 PTR, lower A
@QFF6 PTR, higher "
:gll:i e JS 3* (DELAY); load lfTR 3 and make
OFF3 . fu'st‘ jump to delay
OFF2 £ routine
g::i; XPPC 3 > sccopd jump to delay
OFEF Counter : routine
OFEE -
s o XPPC 3 ; third jump to delay
OFEB Code routine ‘ .
OFEA Unfqrtunately, t!le process is not quite
OFE9 M. binsey as simple as might first appear. The
OFES Key-Code contents of the accumulator are altered
OFE7 7:80gm-Code by the subrou?me. Thus 1f the contents
OFES half of tpe AC prior to the jump to delay
OFES Keys Bytes routine are required latgr in the main
OFE4 binary program, they must f_u-s_t l;e stored
OFE3 somewhere. As long as it is simply the
OFE2 Byte, higher ADR, higher contents of _the AC which must be
OFE1 Byte, lower ADR, lower preserved, this dogs not present any
@FED STKBSE Cohingse DATA special prob_lems, since the_y can e_asﬂy
OFDF AC \ be stored in the extension ;egxst_er.
OFDE E Unfortunatf.ly, however, the §1tuat10f1
OFDD SR becomes slightly more complicated if
@FDC PTR 1L the conten?s of the pointers themse%ves
OFDB PTR 1 H are altered in the course of a subroutmg,
OFDA PTR2L > STATUS 1 since the return addresses to the main
OFDS PTR 2H program will then be lost.
O0FD8 PTR3L Thus it is necessary to store the return
OFD7 PTR3H addl‘esses at the begin.ning of the sub-
OFD6 ROUTAD L routine, and then re-enter these into the
@FD5 ROUTAD H / pointers at the end of the routine, so
OFD4 AC that an XPPC instruction will effect a
OFD3 E \ return to the main program.
0ED2 SR From a programming point of view it is
OFD1 PTRIL extremely useful to be able to jump
OFDO PTR1H from the middle of one subroutine to a
OFCF PTR2L > STATUS 2 second Subroutme, i.e. to ‘nest’ routines
OFCE PTR2H inside one another like chinese boxes.
OFCD PTR3L However for each jump that is made a
@FCC PTR3H return address must be stored, so that it
OFCB ROUTAD L must be possible to ‘stack up’ the return
OFCA ROUTADH / addresses somewhere in memory in
OFC9 AC order that they can be retrieved as
required. Some microprocessors are
provided with an integral on-chip stack,
(STATUS 3 etc capable of storing up to 12 or 16 return
addresses. This is not the case with the

pointer would be F@Q0 -1 = EFFF.
However in this instance the address
thereby obtained would be incorrect,
since, as stated, there can be no carry
from bit 11 to bit 12 and the four
highest address bits would remain
unaltered (i.e. ‘E’). The correct address
to enter into the pointer is therefore
FFFF.

Whilst the subroutine is being executed,
PTR 3 will contain the address of the
last instruction executed in the main
program, i.e. the return address —1,

assuming of course that the contents of
the PTR are not altered by the subrou-
tine, Thus an XPPC-3 instruction at the
end of the subroutine will effect a
return to main program execution.
However, the address now held by
PTR 3 will be that of the last instruc-
tion in the subroutine, which means
that a subsequent XPPC-3 instruction
would effect a jump to the end of the
subroutine and not the start. For this
reason the final instruction of almost
every subroutine will be a jump back to

SC/MP, however, so that it is necessary
to employ a ‘software stack’.

Software lifo stack

A software stack is basically a routine
which simulates the function of a stack

*JS 3 is a symbol for a ‘pseudo instruction’,
i.e. a statement which results in the gener-
ation of several machine-language instructions
— in this case the loading of PTR 3 and
exchanging the contents of PC and PTR 3.

2-34 — elektor february 1979

using elbug

register, by employing a section of read/
write memory as a scratch-pad store for
the data to be saved.

The advantage of a software stack is
that there need be virtually no limit to
its depth, i.e. the number of return
addresses it is capable of storing. In
addition there is the possibility of
storing the contents of other important
registers, such as the AC or extension
register, in the stack. The software stack
of Elbug utilises the section of RAM
between PFC9 and QFFF. This section
was chosen since it can easily be ad-
dressed via the program counter from
the beginning of that page of memory
(i.e. from QQPP). In addition to return
addresses the contents of all the CPU
registers, with the exception of the PC,
are stored on Elbug stack.

In order to store the status of all of the
CPU registers 11 bytes of RAM are
required. Figure 1 indicates which
locations are reserved for this purpose.
As can be seen, the stack contains
sufficient space to store the status of
each CPU register twice. Since Elbug
only nests to a level of one subroutine
(i.e. one subroutine called by another)
this is sufficient. However a particular
user’s program may require several
subroutines to be nested, in which case
the stack can be extended downwards
from QFC9 as far as is desired.

The stack is organised on a ‘last-in-first-
out’ (lifo) basis, and employs a ‘stack
pointer’ — usually PTR 2 — to point to
the last value pushed onto the stack. A
‘stack routine’ is required to write the
contents of the CPU registers into the
stack, and in order to ensure that the
stack pointer can be used during a
subroutine and the stack address still be
preserved, the status of the stack
pointer (STAKPT) is itself stored in
locations QFFF and QFFE at the top of
the stack (see figure 1). When Elbug is
started, the address QFEQ is written into
these locations; this location represents
the ‘base’ of the stack. The section of
stack from QFFF to QFEQ is fixed,
however below this point the stack can
be expanded or contracted as required.
In a user’s program which contains a
large number of nested interrupts, there
exists the danger of the dynamic portion
of the stack being extended downwards
to the point where it overlaps a user’s
program stored from (CQP onwards. In
order to prevent such an eventuality, a
stack counter (STKEFF) is maintained,
which is incremented or decremented
each time a byte is pushed onto or
pulled off the stack. In addition, a byte
of RAM is reserved which, via the
MODIFY routine or the user’s program,
can be used to specify the number of
bytes of status information which may
be stored on the stack.

This byte, which effectively determines
the depth of the stack, is stored in
location QFFA (STDEEP) — see figure 1.
This byte is compared with the contents
of the stack counter each time a stack
operation is performed, and when the
effective stack depth (STEFF) equals

Table 2.

Elbug STACK routines

o000
0001

0003
0005
0007
0009
0ooB
000D
00OF
0011

0013

0015
0017
0018
001A
001B
001D
001F
0021

0023
0025

0026

0028
0029
0028
002C
002E
002F
0031

0033
0035
0037

0039
003A
003C
003D
003F
0041

0043

0044
0046

0048
0049

0048
004D
004F
0050

0052
0054

0056
0058
005A
0058
005D
Q05F
0060
0062
0064
0065

CBA1
COAB

c898B
COAQ
a7

895
CAFF
3

CFFC

DISPL =0700
STAKPT =0FFF
ROUTAD=QFFD

STFULL = OFFB
STDEEP =0FFA
STKEFF =0QFF9
AC =
PTR =QFF7
SPEED =0FF5
STKBSE =0FEQ
.= 0000
STACK:
NOP
LDI X"15
ST SPEED
LDI L (STKBSE)
ST STAKPT
LDI H (STKBSE)
ST STAKPT-1
LDI 00
ST STKEFF
STSTFULL
JMP $1
PULL:
LD STAKPT
XPAL1
LD STAKPT-1
XPAH 1
LD @1 (1)
ST ROUTAD-1
LD @1 (1)
ST ROUTAD
LD @1 (1)
XPAH 3
LD @1 (1)
XPAL3
LD @1 (1)
XPAH 2
LD @1 (1)
XPAL 2
LD @1 (1)
STPTR-1
LD @1 (1)
STPTR
LD @1 (1)
CAS
LD @1 (1)
XAE
LD @1 (1)
ST AC
LD PTR-1
XPAH 1
ST STAKPT-1
LD PTR
XPAL1
ST STAKPT
DLD STKEFF
LD AC
XPPC 3
JMP PUSH
$1:
JMP START
$2:
JMP PULL
PUSH:
ST AC
LD STAKPT
XPAL 3
STPTR
LD STAKPT-1
XPAH 3
ST PTR-1
LDI L (STAKPT)
XPAL 1
ST @4 (3)

; EA of display

:; 2 bytes for current contents of stack ptr
; 2-byte address of subroutine

; ‘stack-full” flag

; 1 byte to set stack depth

; current stack depth

; scratch-pad for (ac)

; scratch-pad for (ptr)

; speed of cassette routine

; stack base

: set cassette speed
; to 600 bits/sec

; set stack ptr to

; stack base

set stack counter to @
stack-full byte = 0
jump to ‘elbug’

pull status off stack
load ptr 1 with current
contents of stack ptr

e %e wa we me owa

load routine-address from
stack into ‘routad’

; load ptr 3 from stack

load ptr 2 from stack

; load (ptr 1) from stack
into scratch-pad

-

: load s-register from stack

load e-register from stack

; load (ac) from stack into scratch-pad

; store current contents of stack
; ptr in ‘stakpt’ and load ptr 1 from
; scratch-pad

update stack counter
: load ac from scratch-pad
; return

-

‘jlump-assist’

ditto
push status onto stack
; store (ac) in scratch-pad

store (ptr 3) in scratch-pad and
load ptr 3 as stack pointer

push (ptr 1) onto stack and
load ptr 1 as ram pointer

using elbug

elektor february 1979 — 2-35

Table 2, continued.

0067 CA40F LDI h (STAKPT)
0069 35 XPAH 1
006A CFFF ST @-1 (3)
006C 01 XAE ; push (e) onto stack
006D CBO3 ST 3(3)
006F 06 CSA ; push (sr) onto stack
0070 CBO2 ST 2(3)
0072 C1F9 LD-7 (1) ; (ac) from scratch-pad onto stack
0074 CBO4 ST 4(3)
0076 32 XPAL 2 ; push (ptr 2) onto stack
0077 CFFF ST @1 (3)
0079 36 XPAH 2
007A CFFF ST@-1 (3)
007C C1F8 LD-8 (1) ; (ptr 3) from scratch-pad onto
007E CFFF ST @-1(3) ; stack
0080 C1F7 LD9 (1)
0082 CFFF ST @-1(3)
0084 CI1FE LD-2 (1) ; routine-address from ‘routad’
0086 CFFF ST@-1(3) ; onto stack
0988 CI1FD LD-31(1)
008A CFFF ST@-1(3) ; load ptr 3 with routine address and
@@sc 37 XPAH 3 ; store current contents of stack ptr
008D C9FF ST-1 (1) ; (from ptr 3) in ‘stakpt’
0@8F CI1FE LD-2 (1)
2091 33 XPAL 3
0092 C900 STO(1)
0094 ASFA ILD-6 (1) ; update stack counter and
0096 E1IFB XOR-5 (1) ; compare with preset stack depth
0098 9ce4 JNZ $3
009A CAFF LDI X'FF ; set ‘stack-full’ flag
009C COFC ST4(1)
$3:
O@9E 3F XPPC 3 ; jump to subroutine
009F 90B3 JMP §2
Tahis 3. | DEVTE reutime
.LOCAL
PAGE
LDBYTE: ; routine: fetch one byte from cassette
91D1 C215 LD X"15(2)
01D3 1C SR ; speed: 2 to ram
01D4 CAl4 ST X'14 (2)
$1:
01D6 CAFF LDl X'FF
o1D8 01 XAE
01D9 19 S10 ; give stop bit
01DA 40 LDE
01DB 9402 Jps$2 ; wait for start bit
01DD 90F7 JMPS1
$2:
O1DF CA4FF LDI X'FF
01E1 M XAE
01E2 C214 LD X"14 (2) : copyspeed/2
Q1E4 CAQA ST 10(2)
$3:
01E6 BAOGA DLD 10 (2) : 1/2 bit delay
Q1E8 9CFC JNZS3
01EA C408 LDI 08 ; load bit-counter
01EC CAQ8 ST 8(2)
$4:
BG1IEE C215 LD X"15 (2) ; copy speed
01FD CAQ9 ST9(2)
01F2 C416 LDI 22 ; delay 114 us (sc/mp 1)
01F4 B8F00 DLY 00
$5:
01F6 BAO9 DLD 9 (2) ; decrement speed
01F8 9CFC JNZ$5
01FA 19 SIO ; accept bit
01FB BAOS DLD 8 (2)
01FD 9CEF JNZS4 ; B bits accepted
@1FF C215 LD X'15 (2)
0201 CAO09 ST9(2)
$6:
0203 BAQ9 DLD 92 (2) ; decrement speed (1 x 66 us)
0205 9CFC JNZ$6 ; (se/mp 1)
8207 40 LDE ; load byte in ac
0208 3F XPPC 3 : return
0209 90Cs JMP LDBYTE ; jump for next pass

the preset maximum stack depth

(STDEEP), this condition is flagged by

loading X’FF into QFFB (=STFULL).

The STFULL flag can be tested by the

user’s program, and if desired set, so

that subsequent jumps to subroutine are
prevented.

The stack routines in Elbug which are

responsible for storing the contents of

the CPU registers before a subroutine is
executed and retrieving same after the
subroutine is finished are designated the

PUSH and PULL routines respectively.

A complete listing for both routines is

provided in table 2, whilst figure 2

illustrates the timing sequence of the

routines.

The end of the PUSH routine contains

the instructions required to effect the

jump to subroutine, thus it is important
that the start address of the subroutine
in question is first stored on the stack
for reference. The 16-bit start address

(—1) is loaded into locations QFFD and

QFFC (ROUTAD).

With the aid of Elbug’s stack and the

PUSH and PULL routines a jump to

subroutine can be implemented as

follows:

— the start address (—1) of the subrou-
tine is loaded into the appropriate
locations (ROUTAD).

(if the user’s program has not yet
caused the contents of PTR 2 to be
altered, the ROUTAD bytes can be
loaded via it. Upon pressing the RUN
key and leaving Elbug, PTR 2 is
automatically loaded with the address
of the stack base (QFEC). The
displacement values X'1C and X’1D
will reference the higher and lower
ROUTAD locations respectively, If
PTR 2 has already been used, then
effective addresses can be obtained
via PTR 3, since the latter will
contain the start address (—1) of
PUSH. The relative addresses (dis-
placements) are then X'A8 and X'A7

respectively.

— PTR 3 should be loaded with the
start address (—1) of the PUSH
routine (QQ55)

— If the above steps have been taken,
the actual subroutine jump can be
effected by an XPPC-3 instruction.

The program will now jump to PUSH,

causing the current contents of the

SC/MP’s registers to be stored on the

stack, whereupon the subroutine will be

executed. This subroutine may use any
register, the user need have no fears for
their original contents. However it is
worth noting that it is impossible to
transfer data from the main program to

a subroutine via one of the CPU registers

(and vice versa).

The above procedure will enable a

subroutine to be called and implemented

under any circumstances. However there
are situations where the process is even
simpler.

— If the same subroutine is called by
the main programme more than once
without a second subroutine being
called in between, then one need not
load the ROUTAD addresses anew

T L e

2-36 — elektor february 1979

using elbug

Table 4.
BYTOUT
.LOCAL
BYTOUT: ; copy one byte to cassette
05D8 CAG7 ST 71(2) ; store byte in ram
05DA C40B LDI 11
05DC CAOQ8 ST 8 (2) ; load bit-counter
05DE C400 LDI 00
05EQ0 01 XAE
05E1 19 SI0 ; supply start bit
Q5E2 O XAE
05E3 BA20 DLD X'20 (2)
@5E5 C207 LD 7 (2)
@5E7 01 XAE :bytetoe
$1:
Q5E8 C40B LDI 11
OSEA 8F00 ; delay 70 us (sc/mp 1)
05EC C215 LD X"15 (2) ; copy 'speed’
OS5EE CA09 ST9(2)
$2:
@5F@ BAG9 DLD 9 (2) ; decrement speed
05F2 9CFC JNZ $ 2
P5F4 19 SIO ; shift bit out
05F5 40 LDE
05F6 DCBO ORI X'80 ; add stop bit to byte
05F8 01 XAE
05F9 BAGS DLD 8 (2)
05FB 9CEB IJNZS$1 ; if bit-counter = @, continue
@5FD 3F XPPC 3 5 return
O5FE 90D8 JMP BYTOUT ; jump for next pass
Table 5.
LDKB routine
+«PAGE ‘load keyboard’ routine
« LOCAL
LDKB:
0208 C414 LDI LIPULL)—1 ; prepare ptr 3
020D 33 XPAL 3
020E Ca00 LDI H(PULL)
0210 37 XPAH 3
LDKB1: ; label for start address without stack
9211 c4ao LDI L(DISPL)+1
9213 3 XPAL 1
0214 C407 LDI HI(DISPL) ; prepare ptr 1 and ptr 2
0216 35 XPAH 1
0217 C4ED LDI LISTKBSE)
9219 32 XPAL 2
021A C40F LDI HISTKBSE)
021C 36 XPAH 2
$1:
921D C108 LD 8 (1)
021F 94FC JPS1 ; wait for key closure
0221 8F1E DLY 30 : debounce time — approx. 30 ms
0223 C108 LD 8 (1)
0225 CA08 ST8(2) ; store keyboard code in ram
0227 DA4OF ANI OF
0229 CAQ9 ST9(2) ; store binary value of key in ram and
0228 01 XAE iine
$2:
p22C C108 LD 8 (1)
022E 9402 JP$3 ; wait for key release
0230 90FA JMP § 2
$3:
0232 8F1E DLY 30 ; debounce time
9234 CA1F LDI L (TAB)
0236 31 XPAL 1
9237 Cam LDI H (TAB)
09239 35 XPAH 1
023A C180 LD - 128(1) ; fetch 7-segment code
923C CAQ7 ST 71(2) ; store in ram
023E 3F XPPC 3 : return

each time, since once loaded they
remain unaltered. If a second subrou-
tine is called whose address is within
% K of the first, then only the lower
order address byte need be loaded
(ROUTAD low)

— If the contents of PTR 3 are not
altered by the main program between
jumps to one or more subroutine,
then the jump to the PUSH routine
can be realised via an XPPC 3 instruc-
tion.

— If both of the above conditions apply
— which is not infrequently the
case — a single XPPC instruction will
save the status of the CPU registers
and effect a jump to the subroutine!

To return from a subroutine to main

program (or the previous subroutine),

the address of the PULL routine (start
address PP13) is loaded into PTR 3 at
the end of the routine in question. If
the subroutine does not alter the
contents of PTR 3 (again, this will often
be the case), the latter will contain the
last instruction of the PUSH routine.

Since this is in fact a jump to the start

address of the PULL routine (see table 2),

a single XPPC 3 instruction at the end

of the subroutine will cause a return to

the main program.

A similar instruction is present at the

end of the PULL routine, namely JMP

PUSH. This means once PTR 3 has been

loaded with the start address (—1) of

PUSH, and assuming its contents are not

affected by the subroutine, then jumps

to and from the subroutine can always

be implemented using just an XPPC 3

instruction. The subroutine procedure

described above remains valid for
external subroutine calls, i.e. interrupt
requests. It goes without saying, how-
ever, that the interrupt line is not
enabled until the ROUTAD bytes and

PTR 3 have been loaded. Only then will

the XPPC 3 instruction generated by the

interrupt cause a jump to subroutine to
be implemented.

If several interrupt inputs are used, the

software required to recognise the

priority of simultaneous interrupt re-
quests must be included in the sub-
routine, This software was discussed in
an earlier article in the SC/MP series (see
Elektor 33, January 1977).

Series/parallel and parallel/
series conversion routines

Via the extension register and the SIO
(Serial Input/Output) instruction the
SC/MP offers the user the possibility of
serial/parallel and parallel/serial conver-
sion without the need for additional
hardware. The appropriate routines are
already contained in Elbug, since they
are required when transferring data to
and from the cassette interface.

The ‘load byte’ routine (LDBYTE, see
table 3) will load a serial data byte,
including start and stop bits, via the
serial input (SIN) into the extension
register. As was explained in part 5 of
the series on the SC/MP system (see
Elektor 35, March 1978), the rate at

using elbug

elektor february 1979 — 2-37

which the data is transferred can be
varied. This is done by altering the
contents of the SPEED-address (OFF 5).
Once LDBYTE has been executed the
serial data word is available in parallel
form in both the AC and extension
register. During this routine a stop bit is
present continuously at the serial
output (SOUT).

The ‘byte out’ routine (BYTOUT, see
table 4) enables a byte to be transmitted
in serial form — along with start and
stop bits — from the serial output. Once
again the transmission rate can be varied
with the aid of the SPEED byte. In the
case of both the LDBYTE and BYTOUT
routines the data is coded in ASCII
format, i.e. one start bit, eight data bits
and one stop bit. Data presented at the
serial input during execution of the
BYTOUT routine is ignored, which
means that using these routines the
SC/MP may only be operated in the
half-duplex mode.

The routines can be employed in a
variety of applications such as, e.g. to
interface to a TTY or telex. The rou-
tines are initiated not by the Elbug
stack routines, but in the manner
illustrated in the case of the delay
routine described earlier. The user thus
has the possibility of inputting and
outputting information via the CPU
registers. In the case of the BYTOUT
routine it is in fact necessary that the
byte to be transmitted be loaded into
the AC under main program control.

In addition to PTR 3, which is used in
jumping to both routines, PTR 2 is also
required. Before the jump to either
routine this pointer is loaded with QFEQ,
since it is via this pointer that the
SPEED byte is referenced. Both rou-
tines leave PTR 1 unaltered.

The keyboard routine

This routine, the listing for which is
given in table 5, is designed to scan the
keyboard. An interesting feature of the
routine is that it has two start addresses:

LDKB = (20B the start address when
called by the stack routines
LDKB1 = (211 the start address when

called by other than the

stack routines.
In the latter case PTR 3 is loaded with
the address (—1) LDKBI, and the
routine started by an XPPC 3 instruc-
tion. PTR 3 must be loaded with the
appropriate address prior to each jump,
since there is no JMP LDKBI1 instruc-
tion. In both cases the jump back to the
main routine is only implemented after
the key has been released.
When called by other than via the stack,
at the end of the keyboard routine the
binary equivalent of the hex data key
which has been pressed is available in
the extension register, whilst the corre-
sponding 7-segment code is present in
the AC. The code generated by the
keyboard hardware is written into
address QFES8.
If the routine is called via the stack,
then it is not possible to transfer infor-

Table 6. GETHEX routine

«PAGE

+ LOCAL

GETHEX:
023F CA406 LDI L (DISPL)+6 : load ptr 1 with address
0241 AN XPAL 1 ; of display 6
0242 C407 LDI H (DISPL)

9244 35 XPAH 1

9245 C4E7 LDI L (STKBSE)+7 ; load ptr 2 with
0247 32 XPAL 2 ; stack base + 7
0248 CA40F LDI H (STKBSE)

024A 36 XPAH 2

024B C404 LDI 04 ; load key-counter
024D CAF9 ST-71(2)

$1:
024F C4565 LDI L (PUSH)-1
9251 33 XPAL 3
0252 C400 LDI H (PUSH)

0254 37 XPAH 3

0255 C40A LDI L (LDKB)-1

0257 CBAS8 ST-88(3)

0259 C402 LDI H (LDKB)

0258 CBA7 ST -89 (3)

925D 3F XPPC 3 ; call 'Idkb’ (via stack)
025E CA4EQ LDI L (STKBSE)

0260 33 XPAL 3 ; ptr 3 becomes ram pointer
0261 C40F LDI H (STKBSE)

9263 37 XPAH 3

0264 C307 LD 7 (3) : fetch 7-segment code
9266 CDFF ST @-1 (1) ; write to display 5 (4, 3, 2)
0268 C400 LDI 00

026A COFF ST-11(1) ; blank all other displays
026C C9FE ST-21(1)

026E CO9FD ST-3(1)

0270 C9FC ST-4(1)

0272 C9FB ST-51(1)

0274 C309 LD 9 (3) ; binary value of key to ram table
0276 CEFF ST@-1(2)

0278 BBOD DLD @ (3)

027A 9CD3 JNZ $1 ; 4 keys?

027C C480 LDI X'80

@27E COFF ST-1101) ; '+ to displays 0,1
0280 COFE ST-21(1)

0282 C306 LD 6 (3) ; form higher byte
0284 1E RR

0285 1E RR

9286 1E RR

0287 1E RR

9288 01 XAE

9289 C305 LD 5 (3)

028B 58 ORE

028C CB@2 ST 2(3)

028E C304 LD 4 (3) ; form lower byte
0290 1E RR

0291 1E RR

0292 1E RR

0293 1E RR

0294 ™ XAE

0295 C303 LD 3(3)

0297 58 ORE

0298 CBO1 ST 1(3)

JSPULL: ; assist-label for return via ‘pull’
020A C400 JS 3 (PULL) ; to main program
g29Cc 37
020D C414
@29F 33
02A0 3F

mation out of the keyboard routine, via
the SC/MP registers, into the main
program. The above information is only
available at the RAM locations reserved
for this purpose, namely QFE7 to QFE9
(see figure 1). If desired, the table of
7-segment code can be used separately.
For organisational reasons it is not
included in LDKB, but is stored in
memory from location Q11F,

The GETHEX routine

This routine itself calls the above-

described LDKB routine four times in
order to store the four hexadecimal
numbers successively generated by the
keyboard. These four hex digits are
joined together to form two bytes,
which are stored at addresses (QFEl
(lower byte) and QFE2 (higher byte).
The start address of the GETHEX
routine is P23F (see table 6) and the
routine is initiated via the stack routines.
In order to jump to the routine from
the main program the start address (—1)
is loaded into location ROUTAD, and

e L I~ e v ———— e ——

2-38 — elektor february 1979 using elbug
Figure 2. This diagram shows the sequence in
which the PUSH and PULL routines of Elbug | | &2
store and retrieve status information when
subroutines are called. Subrouting3 —— == = = = ———————— e
Subroutine?2 ————————— —— f——]
Push Pull Push Pull
Subrouting 1 —————— [—, l_l
Push Pull
Main program 79021 2
Table 7. PTR 3 is loaded with the start address
(—1) of the PUSH routine, whereupon
y an XPPC 3 can be executed.
SR T When the routine is finished, the two
* PAGE ; puthex routine above-mentioned bytes can be read out
* LOCAL of their locations in memory (QFE1 and
HARIRN PFE2) to be used later in the program
02A1 C4EQ LDI L (STKBSE) A oI hital DEOEstE:
02A3 33 XPAL 3 ; load ptr 3 as ram pointer B N
02A4 C40F LDI H (STKBSE) data is retrieved before the GETHEX
g2A6 37 XPAH 3 routine is called again, otherwise two
02A7 CA4EQ LDI L (STKBSE) new bytes will be written into these
02A9 32 XPAL 2 ; prepare ptr 2 and ptr 1 for locations and the previous data will be
02AA C40F LDl H (STKBSE) ; auto-indexed addressing lost.
92AC 36 XPAH 2
92AD C4E3 LDI L (STKBSE)+3
02AF 31 XPAL1 z
0280 CAOF LDI H (STKBSE) PUTHEX routine
92B2 35 XPAH 1 The last routine to be examined is also
0283 C403 LDI 03 ; load byte-counter the simplest. The PUTHEX routine does
02B5 CBOF ST OF (3) nothing more than convert the contents
$ of memory locations PFE0 to QFE2
0287 C200 LD O (2) f fgtch first (next) byte into the equivalent 7-segment code, and
gggg g;g': ;'::‘I:@?rm fb;:°'3’° then display the results as a six-digit
038D €601 ' D@1 (2) . o hexadecimal number. The code for the
i again, ¥
02BF 1C SR Cand Bl 47 four lowest-order bits of address QFE(
02c0 1C SR . appears on display 2 (third from the
92c1 1C SR right), the code for the next four bits on
p2c2 1C SR display 3, and so on. The start address
p2Cc3 CDO1 ST @1 (1) ; to next ram address of PUTHEX is P2A1 (see table 7), and
02C5 BBOF DLD OF (3) the routine may only be called via the
02C7 9CEE JNZ §1 ; 3rd byte stored? PUSH routine in the fashion described
02C9 Ca41F LDI L (TAB)-1 3 b
gggg glm ,’_‘th :TAB) FRISETO DI ToR NG Acveatig That concludes the discussion of Elbug
02CE 35 XPAH 1 routines which can be called by a user’s
02CF C406 LDI 06 : load hex-character-counter program. As one might have imagined,
02D1 CBOF ST OF (3) the entire monitor program has not
$2: been analysed, since the remaining
02D3 gam ;D E@-1 (2) ; fetch first (next) half-byte routines cannot be used outside of
0205 91 A Elbug. It is hoped that the above article
0206 Citw LD-128 (1) : fetch 7-segment code will not only reveal how the routines
02D8 CAQ5 ST5(2) : load in ram . % d b
02DA BBOF DLD OF (3) whjc.h haw{e been dmc‘usse c?n e
02DC 9CF5 INZ§2 - 6 digits ready? profitably incorporated into one’s own
@2DE C400 LDI L (DISPL) programs, but also that studying these
02E0 31 XPAL 1 : load ptr 1 with address of displays routines will lead the aspiring program-
02E1 CA407 LDI H (DISPL) mer to an understanding of the various
02E3 35 XPAH 1 techniques involved, and enable him to
02E4 C406 LDI 06 ; load counter tackle longer and more sophisticated
02E6 CBOF ng OF (3) programming tasks. 7]
D2E8 C601 LD @1 (2) ; 7-segment code to
02EA CDO1 ST @-1 (1) ; display 5
02EC BBOF DLD OF (3)
@2EE 9CF8 JNZ$3 ; ready?
02F0 90A8 JMP JSPULL ; via assist-label to ‘pull’

