
PROJECT

TWONKY
May Hadley has designed an MPU music box that plays random tunes to the rules
laid down by a compositional algorithm.

EVER SINCE THE computer was
invented, whenever that was, there
have been people who have sought
to apply it in previously untouched
fields. Doubtless the same will
happen with the microprocessor to a
much greater extent because of its
vastly lower cost and wider circle of
users. Certainly the amateur
constructor can do far more than
simply make miniature computers.
Twonky is one such application in the
field of computer music.

Macro Music
Music was first applied to

computers in the late '50s. Machines
of that vintage were often fitted with
loudspeakers monitoring a register or
address bit, to aid in software and
hardware fault tracing. Cunning
programmers soon realised how to
make such computers play tunes
when no-one was around to stop
them, and so computer music was
born. It grew rapidly.

One of its earliest exponents was
Professor Lejaren Hiller of Illinois
University who together with his
colleague Prof. Leonard M. Isaacson
conducted a series of studies which
are described in their book
'Experimental Music' (McGraw Hill
1 959). They began by using the
computer to test the classical
compositional rules of species
counterpoint, developed in the
seventeenth century by J. J. Fux and
taught to music students ever since.
A program was written which would
generate random notes, test them
against the rules and insert them
where a suitable match was found.
Though this sounds simple enough,
it took several years to do, as the
'rules' were by no means complete:
many things were assumed as being
obvious by the musical theorists
which had to be explicitly stated for
the computer.

Suite Illiac
By this time, the original aim,

which was to test the compositional

rules in question, had become
secondary to the fun of using the
computer to generate new music.

Other styles and principles, ranging
from the sixteenth to the twentieth
centuries, were applied in something
of a mixture, and the result served up
as the 'Illiac Suite for String Quartet'
(named after the famous ILLIAC IV
computer on which they were
composed.) This proved rather
disappointing, sounding almost a

ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1979

parody of twentieth century chamber
music.

Other workers, such as Professor
J. K. Randall of Princeton University,
developed slightly different lines of
approach, including the one used by
Twonky. Prof. Randall's work
'Prelude to Mudgett' may be heard
on disc (Nonesuch 71 245), and is a
typical example of this style and
approach.

While this effort was going into
composition and stylistic analysis,

79

CO0

PROJECT:Jwonky
Full circuit diagram of Twonkey. If a less
'harsh' output from the loudspeaker is
required a 10n -47n capacitor can be con-
nected between the base of (11 and ground.

NOTE:
IC1 IS 4030
IC2 IS 4006
IC3 IS SC/MP
IC4 IS 4011
IC5&6 ARE 2112
IC7 IS 1702
Dl IS BC184L
D1-8 ARE 0A90

HOW IT WORKS - HARDWARE
The National Semiconductor SC/MP is a

simple, cheap, 8 -bit processor designed for
use in minimal systems; to this end it has an
on -chip clock generator and I/O facilities,
and needs no bus buffers in small systems.
The instruction set is not large, but contains
such useful features as a wide range of
addressing modes and the capability of
double -indexed memory references.

Internally, the chip has seven main reg-
isters; an 8 -bit accumulator, an 8 -bit status
register, four 16 -bit pointer or index registers
(one of which is dedicated as the program
counter), an 8 -bit extension register. All
memory references (including jumps) are via
an index register; the second byte of each
memory reference instruction is a displace-
ment which is added to the index register and

NWDS, and NRDS high, to prevent spurious
memory enables while the MPU outputs are
in the high impedance mode between
memory accesses.

Components R5, R8, C2, and C3 set the
processor clock frequency at about 4MHz. R5
can be made variable to act as a tuning
control, but must be between 100 ohms and
2kilohms. The MPU is reset on power -up by
R3 and Cl, and the first instruction is fetched
from location OOIH.

106 and IC7 form a PRBS generator. An
18 -stage shift register, clocked by the NADS
strobe from the MPU has exclusive OR feed-
back arranged around it such that it will
produce a stream of bits in a repeating'
sequence 218-1 (262,143) bits long. Within this'
overall sequence, the bit stream is random,

R10-17 -9V
240R

other people were engaged in
turning the computer into a new
musical instrument, a 'super
synthesiser' (although this work was
begun before Dr Moog invented the
voltage controlled analogue
synthesiser). Several programs have
been developed; TEMPO by Glough
and Sosman on an IBM 360/44,
MUSIGOL at the University of
Virginia, and the most widely used,
MUSIC 4 (and its derivatives
MUSIC's 4B, 4BF, and 5) at Bell labs
and Princeton.

This is a program, mainly in
FORTRAN IV but with some
assembly language sections, which

play tunes monophonically using
squarewaves. The compositional
algorithm (due to Prof. Randall) is
based on two simply observations: -

1. Every tune has at least one
highest note

2. Every tune can be split into two
subtunes at least one not long, which
may then themselves be regarded as
tunes.

To compose a tune using these
rules, we assume also that each tune
only has one highest note, and that
each subtune is half the length of the
tune. We take a given note as the
highest note in the whole tune and

may be in the range -127 to 127. If the
displacement has the value -128 the con-
tents of the extension register are used as the
displacement to be added (doubly indexed
memory reference). There is, however, no
explicit subroutine call instruction.

The status register contains carry, over-
flow, and interrupt enable flags, two sense
input bits, and three user definable flags.
These last five are taken to package pins to
provide limited I/O capability. Twonky uses
the sense -B input to read random bits from
the pseudo -random binary sequence genera-
tor (PRBS generator) and the flags to drive
the audio amplifier. Out of the total of 46
instructions, only 17 are used and these are
shown in fig. 1 along with the status register
bit allocation.

The program itself is 256 bytes long and
lives in a 1702A EPROM at addresses 000H
to OFFH. 256 bytes of RAM in the shape of 2,
2112-A4 256 x 4 bit static chips are provided
at addresses 100H to 1FFH. Address lines
AO to A7 are common to 1C2, 3, and 4, while
A8 is taken to the CE input of IC2 to enable it
at the correct range of addresses. Note that
1C2 will be enabled by any memory access,
read or write, in the correct address range. If
a faulty program goes berserk and tries to
write to ROM, two devices will be enabled
onto the data bus at the same time. This
might be fatal, were it not for R9 -R16 which
prevent a short circuit. Additionally, in con-
junction with DI -D8, they prevent negative
voltages from the PMOS ROM appearing at
the inputs of the other, NMOS, devices on the
bus.

The RAM is enabled by the signal from pin
11 of IC5, which will be low (RAM enabled)
when A8 is high and either NWDS (not write
data strobe) or NRDS (not read data strobe)
is low. The resistors R7, 8, and 18 tie AS,

i.e. the probability of the next bit at any point
in the sequence being a one is constant at 0.5.
This random sequence is fed to sense -B on
the MPU and is used by the software to
provide the random element in each tune.

Also, since the sense -B input is not samp-
led by the MPU internal logic during the
NADS strobe time, the random bit will'
always be read unambiguously.

The power to 106 and 1C7 is not switched;
they are CMOS devices which when not
being clocked draw only about a microamp.
This is necessary, as should the shift register
be in the all zero state on switch on, the
generator will stick and produce a con-
tinuous stream of zeros. Logic could be
incorporated to force ones into the register
on switch -on, but unless it was very devious,
would result in the dame sequence of
pseudo -random bits (and hence tunes)
occuring every time.

The audio output is taken from the MPU
flag 0 output and amplified by Q1 to drive the
speaker. A line level output may also be
taken from flag 1 or 2 if desired.

There are two types of SC/MP processor
available; this circuit uses the NMOS variety,
which is cheaper, faster, uses less power and
needs only +5V and ground. The older
PMOS type can be used, but not all the
control signals are the same, and so the
circuitry around 105 will need to be altered.
The pitch will also be about an octave lower.
Owners of SC/ MP development systems,
such as the introkit, MK14, or Scrumpi will be
able to hook up a PRBS generator and
loudspeaker to their systems with little tro-
uble, and to relocate the code as appropriate.
For further details on the SC/MP chip the
data sheet, Nat. Semi pub. No. 426305290-
00IB (!) may be consulted.

0000 08 04 01 36 04 FE 32 C4 01 CA 00 C4 00 36 C4 00 Hex dump of the
0010 32 C6 01 C4 80 31 C4 80 01 C4 01 35 Cl 00 C9 80 PROM program for
0020 01 F4 02 02 01 C9 80 06 D4 20 98 OA Cl 80 F4 01 the Twonky composer
0030 02 C9 80 01 90 10 01 F4 FE 02 01 Cl 80 F4 01 02
0040 C9 80 01 F4 02 02 98 05 01 C5 02 90 CF C4 00 32
0050 F4 F9 02 98 06 F4 07 02 32 90 B6 C4 EF 32 35 C4
0060 01 37 C4 FF 33 06 D4 20 9C 06 C4 97 31 3D 90 F5
0070 06 D4 20 9C 06 C4 9B 31 3D 90 08 C4 9F 31 3D C4
0080 9F 31 3D 06 D4 20 9C 06 C4 9B 31 3D 90 D7 C4 9F
0090 31 3D C4 9F 31 3D 90 CD C4 01 90 06 C4 02 90 02
00A0 C4 03 35 C7 FF 01 C2 80 CB 00 01 F4 08 02 01 C2
00B0 80 01 C4 00 35 19 F4 FF 02 9C FA 01 CB 01 33 98
0000 04 33 C7 FF 3D 33 C3 01 31 C4 07 07 C4 OF SF 00
OODO C3 00 F4 FF 02 9C FB C4 00 07 C3 00 F4 FF 02 9C
00E0 FB 31 F4 FF 02 9C El 8F 3A C7 02 33 9C D7 35 3D
00F0 32 35 3C 44 48 51 5B 67 FE FO D6 BD B3 AO SF 7F

CO

generates musical sounds as a series
of digital samples which are fed to a
D/A converter, usually via the
intermediate medium of magtape.
Sounds are described in terms of
instruments, which are routine that
use stored tables of sinewaves,
exponentials, ramps and other
waveforms to generate complex
sound sources. These are coupled via
filter, reverberations, stereo position
and other modules into an
orchestra,' which outputs the final

sound onto tape. The music to be
played is input in the form of note
cards. These punched cards carry
such details as pitch, rate of rise and
fall of the envelopes, start time, and
other, user -defined parameters.

One Hundred 'seconds
In the early days, it took as much
as 50 to 100 seconds of computer
time to generate a second of music,
but with modern machines, synthesis
can take place in real time or faster.
The program is not, however,
suitable for live performance use.
The result of such programs can be
most impressive, particularly in the
hands of a skilled 'player.' Certainly,
they are far more flexible and
versatile than analogue synthesisers.
They have the particular merit that if,
for example, 96 oscillators are
needed, the function OSCIL is
merely called 96 times. This uses
more processor time, but does not
need any additional hardware.

MUSIC 4B, together with
analogue sound synthesisers, is
described in Hubert S. Howe's book
'Electronic Music Synthesis.' The
field of digital sound synthesis is
certainly an exciting one, but is
somewhat beyond the reach of the
amateur, although with powerful 16
bit machines such as the LSI 11 and
TMS9900 becoming cheaper, it may
not remain so for long.

A Little Micro Music
Twonky is a composing machine

which also incorporates sqftware to

assign it randomly to one or other of
the subtunes. The highest note in the
other subtune must be lower than
that in the first: we assume it is the
next note down whatever scale we
are using. However, each subtune
may now itself be regarded as a new
tune, provided it is at least two notes
long. Hence in each first -level
subtune, we take the highest note
and assign it randomly to one or
other of the second -level subtunes,
adding the next lowest note in our
scale as the highest note in the other.
By repeating the process, we double
the number of known notes in our
tune (each of which is the highest
note of some subtune) and increase
the number of pitches by one for
each level of splitting we indulge in.
This process can hence be described
as a random tree.

Seventh Level
In Twonky, seven levels of

division are used to generate 128
subtunes each one note long, with a
total range of 8 pitches (one octave
of the scale of C major). The random
decision at each level is produced by
a hardware random number
generator.

The rhythmic element in each tune
is produced by selecting one of a
small number of rhythm units or bars
on a random basis and fitting the
notes of the tune to that bar. The
melodic algorithm weights the
distribution of notes binorally, thus
there are 2 F s (one of each octave),
7 G s 21 As, 35 B s, 35 C s, 21 D s,
and 7 E s. The tonic or key -note C
occurs most frequently, lending a
definite key to the melody. However,
it is usual for the dominant G also to
occur frequently, which it does not
do. This gives all Twonky's
compositions a unique and unusual
style, somewhat like Mediaeval
music (nothing to do with the use of
a SC/MP MPU) this is enhanced by
the ready tone of the square wave
output.

00
01
03
04

08
C4
36
C4

01

FE

START
NOP
LDI
XPAH
LDI

1

PTR 1
FEH

06 32 XPAL PTR 2
07 C4 01 LDI 1

09 OA 00 STO PTR 2+0
OB C4 00 LDI 0
OD 36 XPAH PTR 2
OE C4 00 LDI 0
10 32 XPAL PTR 2

11 C6 01 OUTLOOP LD PTR 2+ 1
13 C4 80 LDI 80H
15 31 XPAL PTR 1
16 C4 80 LDI -128
18 01 XAE
19 C4 01 LDI 1

1B 35 XPAH PTR 1
IC Cl 00 INLOOP LD PTR 1 + 0
1E C9 80 STO PTR 1-128
20 01 XAE
21 F4 02 ADI 2

23 02 CCL
24 01 XAE
25 C9 80 STO PTR 1-128
27 06 CSA
28 D4 20 ANI 00100000B=32
2A 98 OA JZ INCLOW
2C Cl 80 LD PTR 1-128
2E F4 01 ADI 1

30 02 CCL
31 C9 80 STO PTR 1-128
33 01 XAE
34 90 10 JMP EXTEST
36 01 INCLOW XAE
37 F4 FE ADI -2
39 02 CCL
3A 01 XAE
3B CI 80 LD PTR 1-128
3D F4 01 ADI
3F 02 CCL
40 C9 80 STO PTR 1-128
42 01 XAE
43 F4 02 ADI 2
45 02 CCL
46 98 05 EXTEST JZ PTEST
48 01 XAE
49 C5 02 LIDO) PTR 1 + 2
4B 90 CF JMP INLOOP
4D C4 00 PTEST LDI 0
4F 32 XPAL PTR 2
50 F4 F9 ADI -7
52 02 CCL
53 98 06 JZ NOTE
55 F4 07 ADI 7

57 02 CCL
58 32 XPAL PTR 2
59 90 B6 JMP OUTLOOP
5B C4 EF NOTE LDI EFH
5D 32 XPAL PTR 2
5E 35 XPAH PTR 1

PROJECT: Twonky

PROGRAM LISTING
Dummy instruction - not executed
Store 1 in location 510

Clear cycle counter (No. of levels down
decision tree)
Each location in top half of memory is
written to two locations starting at
bottom of RAM with random incre-
ment. Repeated 7 times
Increment cycle counter
Set PTR 1 =180H= 384 (bottom of top
half of RAM)
Extension register= -128
PTR 1 points to location being read, and
is stepped upwards. EXT contains
displacemtn to location being written

Take contents of (PTR 1) and store 1 in
(PTR I + EXT) and in (PTR 1 + EXT + 2)

Input random bit and either:

Increment PTR 1 + EXT+ 2) or:

Increment PTR 1 + EXT)

Add 2 to EXT for next pass

If EXT= 0 go to PTEST; 1 pass through
memory completed, else add 2 to PTR 1
and loop back to INLOOP

If cycle counter PTR 2) = 7 then go to
note PTR 2= 0)

else go to OUTLOOP

PTR 2 points to pitch table
PTR was zero)

Clear high byte of PTR 1 return address

83 06 SECPART CSA
84 D4 20 ANI 001000008
86 9C 06 JNZ RHYTH3
88 C4 9B LDI 9BH
8A 31 XPAL PTR 1
8B 3D XPPC PTR 1
8C 90 D7 JMP NXNOTE
8E C4 9F RHYTH3 LDI 9FH
90 31 XPAL PTR I
91 3D XPPC PTR 1
92 C4 9F LDI 9FH
94 31 XPAL PTR I
95 3D XPPC PTR 1
96 90 CD JMP NXNOTE
98 C4 01 WRNOTE LDI 1

9A 90 06 JMP GO
9C C4 02 LDI 2

9E 90 02 JMP GO

AO C4 03 LDI 3

A2 35 GO XPAH PTR 1
A3 C7 FF LD(d) PTR 3-1
A5 01 XAE
A6 C2 80 LD PTR 2-128
A8 CB 00 STO PTR 3 + 0
AA 01 XAE
AB F4 08 ADI 8

AD 02 CCL
AE 01 XAE
AF C2 80 LD PTR 2-128
B1 01 XAE
B2 C4 00 LDI 0

B4 35 XPAH PTR 1
B5 19 5101 SIO
B6 F4 FF AD1 -1
B8 02 CCL
B9 9C FA JNZ S101
BB 01 XAE
BC CB 01 STO PTR 3+ 1
BE 33 XPAL PTR 3
BF 98 04 JZ PLAY
CI 33 XPAL PTR 3
C2 C7 FF LD(a) PTR 3-1
C4 3D XPPC PTR I
C5 33 PLAY XPAL PTR 3
C6 C3 01 LD PTR 3+1
C8 31 POS XPAL PTR 1
C9 C4 07 LDI 00000111B
CB 07 CAS
CC C4 OF LDI 15
CE 8F 00 DLY 0
DO C3 00 LD PTR 3+0
D2 F4 FF ADII ADI -1
D4 02 CCL
D5 9C FB JNZ ADII
D7 C4 00 LDI 00000000B
D9 07 CAS
DA C3 00 LD PTR 3+0
DC F4 FF ADI2 ADI
DE 02 CCL
DF 9C FB JNZ AD12
El 31 XPAL PTR I
E2 F4 FF ADI -1
E4 02 CCL

Input random bit and either:

Write middle sized note by subroutine
at 9BH, on return go to NXNOTE

or write 2 short notes by 2 calls to
subroutine at 9FH

Go to NXNOTE for next note from RAM

Subroutine WRNOTE. Entry point de-
termines note length divisor. This is
loaded to high byte of pointer con-
taining return address as this is always
zero)

Load pitch code from RAM, use as index
for table of pitches. Replace code with
actual pitch from table. Pitch code stays
in extension register

Add 8 to pitch code and use as index to
duration table contains number of
cycles for 0.362 secs at each pitch)

Note length to EXT ready for division
divisor is fetched from pointer 1 high
byte which is zeroed at the same time

Number of cycles divided by 2, 4, or 8
depending on subroutine entry point to
give the 3 different note lengths

Note length is stored in RAM location
immediately above corresponding pitch
if end of RAM , 100H) has been reached,
go to play else decrement PTR and
return

Load note length PTR points to low
byte of current note) and store in PTR 1

Load bit pattern to set flag bits in stat
reg. Output high delay to make half
cycles of audio waveform same length

Load pitch from RAM number of times
round this delay loop for a half cycle at
desired frequency)

Clear flag bits
Takes audio output low
Load pitch from RAM
Delay loop for negative half cycle

Decrement cycle counter. If not zero, go
to POS for another cycle

5F C4 01 LDI
61 37 XPAH PTR 3
62 C4 FF LDI FFH
64 33 XPAL PTR 3
65 06 NXNOTE CSA
66 D4 20 ANI 00100000B
68 9C 06 JNZ RHYTH1
6A C4 97 LDI 97H
6C 31 XPAL PTR 1
6D 3D XPPC PTR 1
6E 90 F5 JMP NXNOTE
70 06 CSA
71 D4 20

,RHYTH1
ANI 00100000B

73 9C 06 JNZ RHYTH2
75 C4 9B LDI 9BH
77 31 XPAL PTR 1
78 3D XPPC PTR 1
79 90 08 JMP SECPART
7B C4 9F RHYTH2 LDI 9FH
7D 31 XPAL PTR 1
7E 3D XPPC PTR 1
7F C4 9F LDI 9FH
81 31 XPAL PTR 1
82 3D XPPC PTR 1

will be stored here)

Set PTR 3 = 511= 1FFH top of RAM)

Start of note length writing loop
input random bit and either:

Write long note by subroutine at 97H,
on return, jump back to NXNOTE

or input random bit and either:

Write middle sized note by subroutine
at 9BH, on return go to SECPART

or write 2 short notes by 2 calls to
subroutine at 9FH

The programme itself falls naturally into
four parts, which are shown in the four
flowcharts. Of these, three (START, NOTE
and WRNOTE) write the tune, and one
(PLAY) plays it. Before describing the
operation of each in more detail, a couple of
notes are relevant.

- enclosing an expression in brackets
turns it from a number into an address.
Thus 510 is a number, but (510) means 'the
contents of location 510'.
- all variables used in the flowcharts are
actual machine registers except for the
dummy variables A and B in WRNOTE. Of
these, B is introduced only to improve
readibility, while A is an argument passed
to this subroutine from the main program.
It is implemented in object code by calls to
3 different addresses for its 3 possible
values.

START

This is the program section which imple-
ments the random decision tree to select the
pitches used in the tune. In this section the
notes are numbered from 1 to 8 (highest to
lowest). The code for each note consists of
two bytes, one for pitch and one for duration,
which occupy consecutive locations. Pitches
are always in even -numbered locations.

On reset, a 1 is written to the last note pitch
location (510), and the loo'p counter PTR 2 is
reset. The program then enters a loop in
which each note in the top half of RAM,

E5 9C El JNZ POS Inter note gap
E7 8F 3A DLY 58 Move note counter to next note
E9 C7 02 LD@ PTR 3 + 2 If PTR 3/200H go to play next note)
EB 33 XPAL PTR 3
EC 9C D7 JNZ PLAY
EE 35 XPAH PTR I Else go back to start for another tune!
EF 3D XPPC PTR 1
FO 32 DEFB 50 350.875 HZ Pitches at 4MHZ
Fl 35 DEFB 53 332.005 HZ
F2 3C DEFB 60 294.985 HZ
F3 44 DEFB 68 261.645s HZ
F4 48 DEFB 72 247.645 HZ
F5 51 DEFB 81 A 221.045 HZ
F6 5B DEFB 91 197.47 HZ
F7 67 DEFB 103 175.07 HZ

F8 FE DEFB 254 0.362 SECS Length of long note at
F9 FO DEFB 240 0.361 SECS
FA D6 DEFB 214 0.363 SECS
FB BD DEFB 189 0.361 SECS
FC B3 DEFB 179 0.361 SECS
FD AO DEFB 160 0.362 SECS
FE 8F DEFB 143 0.362 SECS
FF 71 DEFB 127 0.363 SECS

HOW IT WORKS -SOFTWARE
starting at the bottom and going up, is
written to two successive note locations,
starting at the bottom. of RAM and going up.
The writing address catches up with the read
address at location 510, which is written to
508 and back into 510. At each step one or
other of the two locations is incremented,
depending on the state of the random
number generator.

Thus after one complete pass through this
loop, our tune, which started out as one note
- a one - in location 510, is now twice as
long and has two notes, a one and a two,
randomly arranged in locations 508 and 510.
So far so good. We now repeat this loop a
total of seven times, each time doubling the
number of notes written, until the memory is
full (128 notes). We will then have 8 different
note numbers or pitches. In fact, what we
have done is identical to the decision tree
method in the text (try it yourself with pencil
and paper).

This section occupies addresses OOH to
60H. PTR 2 is the loop counter which goes
from one to seven. On reaching seven, the
program branches to NOTE. Within the
section, PTR 1 points to the location being
read, and EXT contains the displace it
from this address to that of the location
written into.

SC/MP fanatics may notice that a separate
read -increment -write instruction sequence is
used (at 2CH to 33H and at 3BH to 41H)
instead of the increment and load single
instruction. This is because the ILD instruc-

Lion does not allow doubly -indexed addres-
sing to be used. This is not made very clear in
the databook, and had to be found out the
hard way!

NOTE
NOTE is the program section concerned

with writing the rhythm of the tune. It has
three different note lengths to play with, of
relative values 4, 2, and 1. Each bar or rhythm
unit can be one of 4, 2 + 2, 2 + 1 + 1 + 1,1 +
1 1 + 2, or 1 + 1 + 1 + 1, determined by
random decisions. The flowchart for this
section is more or less self explanatory. The
notes of different lenghts are written by calls
to the subroutine WRNOTE. This has three
different entry points (98H, 9CG, AOH)
which determine the length of note (long,
medium or short). There is no explicit test for
leaving the loop in this section as this is done
in WRNOTE.

WR NOTE
On being called, this section reads the

value of pitch code from RAM (starting at
location 510 and going downwards) and uses
it as an index to the table of pitches at
locations FOH to F7H. The pitch obtained
from this table is then stored in the same
RAM location from which was read its code.
Thus 3 will be replaced by 3CH, 8 by 67H etc.
These pitches represent the length of a half
cycle at the desired frequency in multiples of
the time taken to go round the delay loops in
PLAY.

By adding 8 to the pitch code the table of
durations (F8H to FFH) is accessed in the
same way. The duration is then divided by 2,
4 or 8 to give the required note length in
terms of a number of cycles at its particular
frequency. This number is then stored in the
RAM location immediately above its corres-
ponding pitch. WRNOTE then tests for the
last note in the tune (PTR 3 = 255); if the last
note has not been reached, control is
returned tio NOTE, otherwise control passes
to PLAY.

PLAY

This section is quite simple, consisting of
two delay loops for pitch, and counters for
duration and number of notes played. For
each note in turn, the duration is first loaded
to PTR 1. The pitch is loaded to the accumu-
lator and the output taken high. The output
remains high while the accumulator is de-
cremented and tested for equality to zero.
This gives a delay dependant on the initial
pitch value. When zero is reached, the output
is taken low and the pitch again loaded and
decremented to zero. At the end of the
second half cycle PTR 1, the duration
counter, is decremented and tested for
quality to zero. If not zero, another cycle of
the same note is produced, otherwise the
next note is played, after the end of tune test
(PTR 3 = 512). When the end of the tune is
reached, control returns to START to write
and play a new tune.

PROJECT:, Twonky

Construction is quite
straightforward. Sockets should be
used for all IC's and normal MOS
handling precautions taken. Begin by
installing all through board links and
testing them for continuity. Then add
the resistors, capacitors, and discrete
semiconductors. IC 5 may be fitted
and the memory decoding checked.
IC 6 & 7 should be added next, and
the production of random bits at IC 7
pin 6 as pin 3 is clocked by shorting
it to ground verified. Finally, add the
LSI chips and switch on. Music
should greet your ears within about
0.25 secs. Gaps of about this length
occur every 128 notes as a new tune
is written. The circuit meets all timing
requirements with the 1 702A only
up to 3.5 MHz. Most 1 702As will
work happily at 4MHz, but the odd
one may not. Reducing the clock
frequency should effect a cure.

The PCB is single Eurocard size
(100 X 160 mm) and will fit in one
of the larger size veroboxes, which
are designed for this standard.
Batteries, either 4 x 1.5V + 1 x 9V
dry cells or the equivalent nicads,
will then fit under the circuit board, or
the PCB may be left uncased. The
only major problem which may arise
is getting the EPROM programmed.
Several firms offering such a service
advertise on the pages of ETI and
one of these should be able to help.

ET!

) IC5

IC6 (

) IC4

BUYLINES
Marshalls, see their advert in this
issue for addresses, will be sup-
plying an EPROM with the Twonky
program burned in. They will also be
able to supply all the other parts for
this project except the PCB which
will be available from Tamtronix,
Ramar, Crofton etc.

IC3

IC7 C

Photograph showing Twonky mounted in
the larger sized Vero flip top case. The
speaker and batteries are mounted under
the PCB. The case is not very deep and a
'shallow' speaker must be used if Twonky
is to be built in this case.

PARTS LIST
RESISTORS all 1/2W, 5%
R1, 9 4k7
R2 100k
R3 12k
R4, 5, 10-17 240R
R6, 7 10k
R8 2k7

CAPACITORS
Cl
C2,3

4u7 16V electrolytic
180p 16V ceramic

SEMICONDUCTORS
IC1 4030
IC2 4006
IC3 SC/ MP
IC4 4011
IC5, 6 2112
IC7 1702
Q1 BC184L
D1-8 0A90

MISCELLANEOUS

PCB, loudspeaker, case batteries and
clips.

Component overlay for the ETI Twonky.
The wire link that is visible on the photo or
the prototype's PCB has been replaced
with a foil track.

LINE
OUTPUT

+5V
UNSWITCHED

+5V
SWITCHED

LOUDSPEAKER
-9V
UNSWITCHED

84 ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1979

